Maximal perimeter, diameter and area of equilateral unit-width convex polygons

نویسندگان

  • Charles Audet
  • Jordan Ninin
چکیده

The paper answers the three distinct questions of maximizing the perimeter, diameter and area of equilateral unit-width convex polygons. The solution to each of these problems is trivially unbounded when the number of sides is even. We show that when this number is odd, the optimal solution to these three problems is identical, and arbitrarily close to a trapezoid. The paper also considers the maximization of the sum of distances between all pairs of vertices of equilateral unit-width convex polygons. Based on numerical experiments on the three first open cases, it is conjectured that the optimal solution to this fourth problem is the same trapezoid as for the three other problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Isodiametric Problem for Equilateral Polygons

The maximal perimeter of an equilateral convex polygon with unit diameter and n = 2m edges is not known when m ≥ 4. Using experimental methods, we construct improved polygons for m ≥ 4, and prove that the perimeters we obtain cannot be improved for large n by more than c/n4, for a particular constant c.

متن کامل

Isodiametric Problems for Polygons

The maximal area of a polygon with n = 2m edges and unit diameter is not known when m ≥ 5, nor is the maximal perimeter of a convex polygon with n = 2m edges and unit diameter known when m ≥ 4. We construct improved polygons in both problems, and show that the values we obtain cannot be improved for large n by more than c1/n in the area problem and c2/n in the perimeter problem, for certain con...

متن کامل

Sporadic Reinhardt Polygons

Let n be a positive integer, not a power of two. A Reinhardt polygon is a convex n-gon that is optimal in three different geometric optimization problems: it has maximal perimeter relative to its diameter, maximal width relative to its diameter, and maximal width relative to its perimeter. For almost all n, there are many Reinhardt polygons with n sides, and many of them exhibit a particular pe...

متن کامل

Enumerating isodiametric and isoperimetric polygons

For a positive integer n that is not a power of 2, precisely the same family of convex polygons with n sides is optimal in three different geometric problems. These polygons have maximal perimeter relative to their diameter, maximal width relative to their diameter, and maximal width relative to their perimeter. We study the number of different convex n-gons E(n) that are extremal in these thre...

متن کامل

Ranking Small Regular Polygons by Area and by Perimeter

From the pentagon onwards, the area of the regular convex polygon with n sides and unit diameter is greater for each odd number n than for the next even number n + 1. Moreover, from the heptagon onwards, the difference in areas decreases when n increases. Similar properties hold for the perimeter. A new proof of a result of Reinhardt follows.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2013