Fuzzy Classifier for Mental Stress Estimation using ECG Statistical Parameters
نویسندگان
چکیده
Mental Stress estimation is an important feature to be derived in health related diagnostic activity. It has been observed that the stress has a major effect on heart functioning. And therefore, ecg should be the major source of stress variation and can be analyzed in various ways in order to extract the effect of mental stress. In the presented work, the ecg is analyzed using the statistical parameters set (energy, entropy, power, standard deviation and covariance). The parameters are not directly computed form the ecg itself. The ecg is first decomposed to level-2 using BIOR-3. 9 wavelet transform to reduce the dimensionality of the ecg sample size. The level-1 and level-2 parameters are used to derive the mental stress levels as normal (N), hyper-1 (H-1), hyper-2 (H-2), depression-1 (D-1) and depression-2 (D-2). On parameter analysis, it has been observed that the energy and entropy are the two parameters that show an effective variation in values when normal to depression or normal to hyper case is observed. Therefore, the energy and entropy values are used for rule making and learning of the system in order to derive the mental stress levels
منابع مشابه
Characteristic Points Detection in Ecg Signal Using Bayesian Learning and Fuzzy System
Characteristic points detection such as beginnings and ends of P-wave, T-wave or QRS complex is one of primary aims in automated analysis of ECG signal. The paper presents one possible approach based on Bayesian inference to design of kernel based classifier. The classification function is constructed using the probability distribution function of standard normal distribution and independent Ga...
متن کاملClassification of Cardiac Signals Using Time Domain Methods
Electrocardiography (ECG) deals with the electrical activity of the heart. The condition of cardiac health is given by ECG and heart rate. A study of the non-linear dynamics of ECG signals for arrhythmia characterization is considered. The statistical analysis of the calculated features indicate that they differ significantly between normal heart rhythm and the different arrhythmia types and he...
متن کاملCardiac Health Diagnosis Using Heart Rate Variability Signals - A Comparative Study
The electrocardiogram (ECG) is a representative signal containing information about the condition of the heart. The shape and size of the P-QRS-T wave, the time intervals between its various peaks etc. may contain useful information about the nature of disease afflicting the heart. However, these subtle details can not be directly monitored by the human observer. Besides, since bio-signals are ...
متن کاملAdaptive Parameter Estimation , Modeling and Patient - Specific Classification of Electrocardiogram Signals
Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on a prio...
متن کاملEvaluation of ECG Signals for Mental Stress Assessment using Fuzzy Technique
This paper presents the evaluation of mental stress assessment using heart rate variability. The activity of the autonomic nervous system (ANS) is studied by means of frequency analysis of the Electrocardiogram (ECG) signal. Spectral decomposition of the Heart Rate Variability before smoking and after smoking was obtained. Mental stress is accompanied by dynamic changes in ANS activity. ECG sig...
متن کامل