Multiple roles for Sox2 in the developing and adult mouse trachea.
نویسندگان
چکیده
The esophagus, trachea and lung develop from the embryonic foregut, yet acquire and maintain distinct tissue phenotypes. Previously, we demonstrated that the transcription factor Sox2 is necessary for foregut morphogenesis and esophagus development. We show that Sox2 is also required for the normal development of the trachea and lung. In both the embryo and adult, Sox2 is exclusively expressed in the epithelium of the trachea and airways. We use an Nkx2.5-Cre transgene and a Sox2 floxed allele to conditionally delete Sox2 in the ventral epithelial domain of the early anterior foregut, which gives rise to the future trachea and lung buds. All conditional mutants die of respiratory distress at birth, probably due to abnormal differentiation of the laryngeal and tracheal cartilage as a result of defective epithelial-mesenchymal interaction. About 60% of the mutants have a short trachea, suggesting that the primary budding site of the lung shifts anteriorly. In the tracheal epithelium of all conditional mutants there are significantly more mucus-producing cells compared with wild type, and fewer basal stem cells, ciliated and Clara cells. Differentiation of the epithelium lining the conducting airways in the lung is abnormal, suggesting that Sox2 also plays a role in the differentiation of embryonic airway progenitors into specific lineages. Conditional deletion of Sox2 was then used to test its role in adult epithelium maintenance. We found that epithelial cells, including basal stem cells, lacking Sox2 show a reduced capacity to proliferate in culture and to repair after injury in vivo. Taken together, these results define multiple roles for Sox2 in the developing and adult trachea.
منابع مشابه
Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm.
Sox2 is expressed in developing foregut endoderm, with highest levels in the future esophagus and anterior stomach. By contrast, Nkx2.1 (Titf1) is expressed ventrally, in the future trachea. In humans, heterozygosity for SOX2 is associated with anopthalmia-esophageal-genital syndrome (OMIM 600992), a condition including esophageal atresia (EA) and tracheoesophageal fistula (TEF), in which the t...
متن کاملEvidence That SOX2 Overexpression Is Oncogenic in the Lung
BACKGROUND SOX2 (Sry-box 2) is required to maintain a variety of stem cells, is overexpressed in some solid tumors, and is expressed in epithelial cells of the lung. METHODOLOGY/PRINCIPAL FINDINGS We show that SOX2 is overexpressed in human squamous cell lung tumors and some adenocarcinomas. We have generated mouse models in which Sox2 is upregulated in epithelial cells of the lung during dev...
متن کاملP-67: Quantitative Expression of Pluripotency Specific-Genes in Mouse Blastocysts Produced by In Vitro Fertilization
Background: The efficiency of in vitro fertilization (IVF) is still low to be developed to blastocyst stage probably because of environmental conditions. It is likely that in vitro environment can not exactly mimic in vivo environment due to differences in media, metabolic content, atmospheric composition, temperature and pH. Therefore it may affect embryo quality by changing in embryo gene exp...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 136 11 شماره
صفحات -
تاریخ انتشار 2009