Nonparametric Functional Calibration of Computer Models

نویسندگان

  • Andrew Brown
  • D. Andrew Brown
  • SEZ ATAMTURKTUR
چکیده

Standard methods in computer model calibration treat the calibration parameters as constant throughout the domain of control inputs. In many applications, systematic variation may cause the best values for the calibration parameters to change across different settings. When not accounted for in the code, this variation can make the computer model inadequate. We propose a framework for modeling the calibration parameters as functions of the control inputs to account for a computer model’s incomplete system representation in this regard, while simultaneously allowing for possible constraints imposed by prior expert opinion. We demonstrate how inappropriate modeling assumptions can mislead a researcher into thinking a calibrated model is in need of an empirical discrepancy term when it is only needed to allow for a functional dependence of the calibration parameters on the inputs. We apply our approach to plastic deformation of a visco-plastic self-consistent material in which the critical resolved shear stress is known to vary with temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differenced-Based Double Shrinking in Partial Linear Models

Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...

متن کامل

Confidence sets in nonparametric calibration of exponential Lévy models

Confidence intervals and joint confidence sets are constructed for the nonparametric calibration of exponential Lévy models based on prices of European options. This is done by showing joint asymptotic normality for the estimation of the volatility, the drift, the intensity and the Lévy density at finitely many points in the spectral calibration method. Furthermore, the asymptotic normality res...

متن کامل

Nonparametric Estimation and Parametric Calibration of Time-Varying Coefficient Realized Volatility Models

This paper introduces a new speci…cation for the heterogeneous autoregressive (HAR) model for the realized volatility of S&P500 index returns. In this new model, the coe¢ cients of the HAR are allowed to be time-varying with unknown functional forms. We propose a local linear method for estimating this TVC-HAR model as well as a bootstrap method for constructing con…dence intervals for the time...

متن کامل

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

Nonparametric Estimation via Local Estimating Equations, with Applications to Nutrition Calibration

Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional epidemiology, we use estimating equations to derive nonparametric estimators of a \parameter" depending on a predictor. The nonparametric component is estimated via local poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016