Structural determinants of monohydroxylated bile acids to activate beta 1 subunit-containing BK channels.
نویسندگان
چکیده
Lithocholate (LC) (10-300 microM) in physiological solution is sensed by vascular myocyte large conductance, calcium- and voltage-gated potassium (BK) channel beta(1) accessory subunits, leading to channel activation and arterial dilation. However, the structural features in steroid and target that determine LC action are unknown. We tested LC and close analogs on BK channel (pore-forming cbv1+beta(1) subunits) activity using the product of the number of functional ion channels in the membrane patch (N) and the open channel probability (Po). LC (5beta-cholanic acid-3alpha-ol), 5alpha-cholanic acid-3alpha-ol, and 5beta-cholanic acid-3beta-ol increased NPo (EC(50) approximately 45 microM). At maximal increase in NPo, LC increased NPo by 180%, whereas 5alpha-cholanic acid-3alpha-ol and 5beta-cholanic acid-3beta-ol raised NPo by 40%. Thus, the alpha-hydroxyl and the cis A-B ring junction are both required for robust channel potentiation. Lacking both features, 5alpha-cholanic acid-3beta-ol and 5-cholenic acid-3beta-ol were inactive. Three-dimensional structures show that only LC displays a bean shape with clear-cut convex and concave hemispheres; 5alpha-cholanic acid-3alpha-ol and 5beta-cholanic acid-3beta-ol partially matched LC shape, and 5alpha-cholanic acid-3beta-ol and 5-cholenic acid-3beta-ol did not. Increasing polarity in steroid rings (5beta-cholanic acid-3alpha-sulfate) or reducing polarity in lateral chain (5beta-cholanic acid 3alpha-ol methyl ester) rendered poorly active compounds, consistent with steroid insertion between beta(1) and bilayer lipids, with the steroid-charged tail near the aqueous phase. Molecular dynamics identified two regions in beta(1) transmembrane domain 2 that meet unique requirements for bonding with the LC concave hemisphere, where the steroid functional groups are located.
منابع مشابه
Structural determinants of monohydroxylated bile acids to activate b1 subunit-containing BK channels
Lithocholate (LC) (10–300 mM) in physiological solution is sensed by vascular myocyte large conductance, calciumand voltage-gated potassium (BK) channel b1 accessory subunits, leading to channel activation and arterial dilation. However, the structural features in steroid and target that determine LC action are unknown. We tested LC and close analogs on BK channel (pore-forming cbv11b1 subunits...
متن کاملMechanism of Increased BK Channel Activation from a Channel Mutation that Causes Epilepsy
Concerted depolarization and Ca(2+) rise during neuronal action potentials activate large-conductance Ca(2+)- and voltage-dependent K(+) (BK) channels, whose robust K(+) currents increase the rate of action potential repolarization. Gain-of-function BK channels in mouse knockout of the inhibitory beta 4 subunit and in a human mutation (alpha(D434G)) have been linked to epilepsy. Here, we invest...
متن کاملTamoxifen inhibits BK channels in chick cochlea without alterations in voltage-dependent activation.
Large-conductance, Ca(2+)-activated, and voltage-gated potassium channels (BK, BK(Ca), or Maxi-K) play an important role in electrical tuning in nonmammalian vertebrate hair cells. Systematic changes in tuning frequency along the tonotopic axis largely result from variations in BK channel kinetics, but the molecular changes underpinning these functional variations remain unknown. Auxiliary beta...
متن کاملStructural Determinants for Functional Coupling Between the β and α Subunits in the Ca2+-activated K+ (BK) Channel
High conductance, calcium- and voltage-activated potassium (BK, MaxiK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (beta) subunits. The most remarkable effects of beta1 and beta2 subunits are an increase of the calcium sensitivity and the slow down of channel kinetics. However, the detaile...
متن کاملMolecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells.
Large-conductance Ca2+- and voltage-dependent potassium (BK) channels exhibit functional diversity not explained by known splice variants of the single Slo alpha-subunit. Here we describe an accessory subunit (beta3) with homology to other beta-subunits of BK channels that confers inactivation when it is coexpressed with Slo. Message encoding the beta3 subunit is found in rat insulinoma tumor (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 49 11 شماره
صفحات -
تاریخ انتشار 2008