Ionizing irradiation induces apoptotic damage of salivary gland acinar cells via NADPH oxidase 1-dependent superoxide generation.

نویسندگان

  • Yoshihisa Tateishi
  • Eri Sasabe
  • Eisaku Ueta
  • Tetsuya Yamamoto
چکیده

Reactive oxygen species (ROS) have important roles in various physiological processes. Recently, several novel homologues of the phagocytic NADPH oxidase have been discovered and this protein family is now designated as the Nox family. We investigated the involvement of Nox family proteins in ionizing irradiation-induced ROS generation and impairment in immortalized salivary gland acinar cells (NS-SV-AC), which are radiosensitive, and immortalized ductal cells (NS-SV-DC), which are radioresistant. Nox1-mRNA was upregulated by gamma-ray irradiation in NS-SV-AC, and the ROS level in NS-SV-AC was increased to approximately threefold of the control level after 10Gy irradiation. The increase of ROS level in NS-SV-AC was suppressed by Nox1-siRNA-transfection. In parallel with the suppression of ROS generation and Nox1-mRNA expression by Nox1-siRNA, ionizing irradiation-induced apoptosis was strongly decreased in Nox1-siRNA-transfected NS-SV-AC. There were no large differences in total SOD or catalase activities between NS-SV-AC and NS-SV-DC although the post-irradiation ROS level in NS-SV-AC was higher than that in NS-SV-DC. In conclusion, these results indicate that Nox1 plays a crucial role in irradiation-induced ROS generation and ROS-associated impairment of salivary gland cells and that Nox1 gene may be targeted for preservation of the salivary gland function from radiation-induced impairment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Oxidative innate immune defenses by Nox/Duox family NADPH oxidases.

The importance of reactive oxygen species (ROS) in innate immunity was first recognized in professional phagocytes undergoing a 'respiratory burst'upon activation. This robust oxygen consumption is related to a superoxide-generating enzyme, the phagocytic NADPH oxidase (Nox2-based or phox). The oxidase is essential for microbial killing, since patients lacking a functional oxidase suffer from e...

متن کامل

Intraglandular transplantation of adipose-derived stem cells combined with platelet-rich fibrin extract for the treatment of irradiation-induced salivary gland damage

The aim of the present study was to determine the effect of adipose-derived mesenchymal stem cells (ADSCs) combined with heterologous platelet-rich fibrin extract (PRFe) on irradiation-induced salivary gland (SG) damage. ADSCs were isolated from C3H mice, whereas PRFe was obtained from New Zealand rabbits. Twelve weeks post irradiation, the ADSCs or PRFe or their combination were transplanted i...

متن کامل

Keratinocyte growth factor prevents radiation damage to salivary glands by expansion of the stem/progenitor pool.

Irradiation of salivary glands during radiotherapy treatment of patients with head and neck cancer evokes persistent hyposalivation. This results from depletion of stem cells, which renders the gland incapable of replenishing saliva to produce acinar cells. The aim of this study was to investigate whether it is possible to expand the salivary gland stem/progenitor cell population, thereby preve...

متن کامل

Effect of ionizing radiation on rat parotid gland.

A common side effect of radiotherapy used in the treatment of oral cancer is the occurrence of structural and physiological alterations of the salivary glands due to exposure to ionizing radiation, as demonstrated by conditions such as decreased salivary flow. The present study evaluated ultrastructural alterations in the parotid glands of rats receiving a fractionated dose (1,500-cGy) of radia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 366 2  شماره 

صفحات  -

تاریخ انتشار 2008