A static pressure sensitive receptor APJ promote H9c2 cardiomyocyte hypertrophy via PI3K-autophagy pathway.

نویسندگان

  • Feng Xie
  • Wei Liu
  • Fen Feng
  • Xin Li
  • Li Yang
  • Deguan Lv
  • Xuping Qin
  • Lanfang Li
  • Linxi Chen
چکیده

This study is designed to investigate whether APJ receptor acts as a sensor in static pressure-induced cardiomyocyte hypertrophy and to investigate the mechanism of PI3K-autophagy pathway. The left ventricular hypertrophy rat model was established by coarctation of abdominal aorta. H9c2 rat cardiomyocytes were cultured in the presence of static pressure which was given by a custom-made pressure incubator. The results revealed that the expression of apelin/APJ system, PI3K, Akt and their phosphorylation were significantly increased in the operation group. Static pressure up-regulated the APJ expression, PI3K phosphorylation, Akt phosphorylation, LC3-II/I and beclin-1 expression in cardiomyocytes. APJ shRNA pGPU6/Neo-rat-399, PI3K inhibitor LY294002, Akt inhibitor 1701-1 blocked the up-regulation of APJ, PI3K phosphorylation, Akt phosphorylation, LC3-II/I and beclin-1 expression, respectively. Moreover, static pressure increased the diameter, volume, protein content of cells, and these could be reversed when the cells were treated with pGPU6/Neo-rat-399, LY294002, and autophagy inhibitor 3-methyladenine, respectively. These results suggested that static pressure up-regulates APJ expression to promote cardiomyocyte hypertrophy by a PI3K-autophagy pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

Apelin-13 promotes cardiomyocyte hypertrophy via PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy.

Apelin is highly expressed in rat left ventricular hypertrophy Sprague Dawley rat models, and it plays a crucial role in the cardiovascular system. The aim this study was to clarify whether apelin-13 promotes hypertrophy in H9c2 rat cardiomyocytes and to investigate its underlying mechanism. The cardiomyocyte hypertrophy was observed by measuring the diameter, volume, and protein content of H9c...

متن کامل

Intermedin Suppresses Pressure Overload Cardiac Hypertrophy through Activation of Autophagy

Left ventricular hypertrophy is a maladaptive response to pressure overload and an important risk factor for heart failure. Intermedin (IMD), a multi-functional peptide, plays important roles in cardiovascular protection. In this study, we revealed an autophagy-dependent mechanism involved in IMD's protection against cardiac remodeling and cardiomyocyte death in heart hypertrophy. We observed t...

متن کامل

Naoxintong/PPARγ Signaling Inhibits Cardiac Hypertrophy via Activation of Autophagy

As a traditional Chinese medicine, Naoxintong capsule (NXT) has been approved by China Food and Drug Administration (CFDA), which is used for cardiocerebrovascular disease treatment. Here we found that NXT extract significantly promoted H9c2 cardiomyocyte cell autophagy involved in increased autophagy-associated gene expression leading to inhibition of mTOR signaling. Moreover, NXT extract incr...

متن کامل

High-density lipoprotein inhibits mechanical stress-induced cardiomyocyte autophagy and cardiac hypertrophy through angiotensin II type 1 receptor-mediated PI3K/Akt pathway

Mechanical stress triggers cardiac hypertrophy and autophagy through an angiotensin II (Ang II) type 1 (AT1) receptor-dependent mechanism. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. This study was designed to evaluate the effect of HDL on mechanical stress-induced cardiac hypertrophy and autophagy. A 48-hr mechanical stretch and a 4-week t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 46 8  شماره 

صفحات  -

تاریخ انتشار 2014