Mumford dendrograms and discrete p-adic symmetries

نویسنده

  • Patrick Erik Bradley
چکیده

In this article, we present an effective encoding of dendrograms by embedding them into the Bruhat-Tits trees associated to p-adic number fields. As an application , we show how strings over a finite alphabet can be encoded in cyclotomic extensions of Qp and discuss p-adic DNA encoding. The application leads to fast p-adic agglomerative hierarchic algorithms similar to the ones recently used e.g. by A. Khrennikov and others. From the viewpoint of p-adic geometry, to encode a dendrogram X in a p-adic field K means to fix a set S of K-rational punctures on the p-adic projective line P 1. To P 1 \ S is associated in a natural way a subtree inside the Bruhat-Tits tree which recovers X, a method first used by F. Kato in 1999 in the classification of discrete subgroups of PGL2(K). Next, we show how the p-adic moduli space M0,n of P 1 with n punctures can be applied to the study of time series of dendrograms and those symmetries arising from hyperbolic actions on P 1. In this way, we can associate to certain classes of dynamical systems a Mumford curve, i.e. a p-adic algebraic curve with totally degenerate reduction modulo p. Finally, we indicate some of our results in the study of general discrete actions on P 1 , and their relation to p-adic Hurwitz spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mumford Dendrograms

An effective p-adic encoding of dendrograms is presented through an explicit embedding into the Bruhat-Tits tree for a p-adic number field. This field depends on the number of children of a vertex and is a finite extension of the field of p-adic numbers. It is shown that fixing p-adic representatives of the residue field allows a natural way of encoding strings by identifying a given alphabet w...

متن کامل

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

Degenerating Families of Dendrograms

Dendrograms used in data analysis are ultrametric spaces, hence objects of nonarchimedean geometry. It is known that there exist p-adic representations of dendrograms. Completed by a point at infinity, they can be viewed as subtrees of the Bruhat-Tits tree associated to the p-adic projective line. The implications are that certain moduli spaces known in algebraic geometry are in fact p-adic par...

متن کامل

ar X iv : 0 70 7 . 40 72 v 1 [ st at . M L ] 2 7 Ju l 2 00 7 FAMILIES OF DENDROGRAMS

A conceptual framework for cluster analysis from the viewpoint of p-adic geometry is introduced by describing the space of all dendrograms for n datapoints and relating it to the moduli space of p-adic Riemannian spheres with punctures using a method recently applied by Murtagh (2004b). This method embeds a dendrogram as a subtree into the Bruhat-Tits tree associated to the p-adic numbers, and ...

متن کامل

Families of Dendrograms

A conceptual framework for cluster analysis from the viewpoint of p-adic geometry is introduced by describing the space of all dendrograms for n datapoints and relating it to the moduli space of p-adic Riemannian spheres with punctures using a method recently applied by Murtagh (2004b). This method embeds a dendrogram as a subtree into the Bruhat-Tits tree associated to the p-adic numbers, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0809.1570  شماره 

صفحات  -

تاریخ انتشار 2008