Macrophage-enhanced formation of cholesteryl ester-core aldehydes during oxidation of low density lipoprotein.

نویسندگان

  • B Karten
  • H Boechzelt
  • P M Abuja
  • M Mittelbach
  • W Sattler
چکیده

Oxidation of low density lipoproteins (LDL) results in changes to the lipoprotein particle that are potentially pro-atherogenic. To investigate mechanisms contributing to the formation of cholesteryl ester (CE)-core aldehydes (9-oxononanoyl- and 5-oxovaleroyl-cholesterol; 9-ONC and 5-OVC, respectively) LDL was incubated in the presence of mouse macrophages (J774 cells) under different culture conditions. Here we demonstrate that the formation of core aldehydes occurs only in transition metal-containing HAM's F10 medium but not in Dulbecco's modified Eagle's medium (DMEM), independent of supplementation with iron and copper at concentrations up to ten times higher than present in HAM's F10. The antioxidative properties of DMEM could be ascribed to the higher amino acid and vitamin content as compared to HAM's F10 medium. Supplementation with these components efficiently inhibited LDL oxidation in HAM's F10. Stimulation of J774 cells with phorbol ester (PMA) resulted in significantly enhanced 9-ONC and 5-OVC formation rates that were accompanied by increased consumption of LDL cholesteryl linoleate (Ch18:2) and cholesteryl arachidonate (Ch20:4) in the cellular supernatant. In PMA (10 ng/ml) activated cells, approximately 5% of Ch18:2 contained in LDL was converted to 9-ONC and 4% of Ch20:4 was converted to 5-OVC. With respect to core aldehyde formation, lipopolysaccharide (LPS, 10 microg/ml) was a less effective stimulant as compared to PMA. Part of the core aldehydes accumulated within the cells. Our study demonstrates that i) J774 macrophages are able to promote/accelerate core aldehyde formation in HAM's F10 medium, and ii) that core aldehyde formation rates can be increased by stimulation of the cells with PMA, and, although to a lesser extent, with LPS. Finally we could show that iii) a small amount of the core aldehydes is internalized by J774 macrophages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of very low density lipoproteins leads to macrophage scavenger receptor uptake and cholesteryl ester deposition.

Chemically modified low density lipoproteins (LDL) are recognized by the macrophage scavenger receptor and can lead to substantial cholesteryl ester accumulation in cultured macrophages. Uptake of modified lipoproteins in vivo could contribute to foam cell formation during generation of the atherosclerotic plaque lesion. In the present study, modification of human pre-beta migrating very low de...

متن کامل

Platelet secretory products increase low density lipoprotein oxidation, enhance its uptake by macrophages, and reduce its fluidity.

Oxidized low density lipoprotein (Ox-LDL) is considered to be involved in the atherogenic process. Factors influencing the formation of Ox-LDL are thus of importance. Oxidation of LDL in a cell-free system in the presence of copper ions was significantly increased (up to 60%) by the presence of platelet-conditioned medium, (PCM) obtained from collagen-activated platelets for the duration of the...

متن کامل

The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters.

Mouse peritoneal macrophages take up acetylated human low density lipoprotein by receptor-mediated endocytosis, hydrolyze its cholesteryl esters in lysosomes, and re-esterify the cholesterol in the cytoplasm. The re-esterified cholesterol accumulates as cytoplasmic lipid droplets that resemble the droplets seen in “foam cells” of atherosclerotic lesions. In the present studies, we have investig...

متن کامل

Macrophages can decrease the level of cholesteryl ester hydroperoxides in low density lipoprotein.

Murine and human macrophages rapidly decreased the level of cholesteryl ester hydroperoxides in low density lipoprotein (LDL) when cultured in media non-permissive for LDL oxidation. This process was proportional to cell number but could not be attributed to the net lipoprotein uptake. Macrophage-mediated loss of lipid hydroperoxides in LDL appears to be metal ion-independent. Degradation of ch...

متن کامل

Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine beta-very low density lipoproteins.

The synthesis and accumulation of cholesteryl esters by monolayers of mouse peritoneal macrophages was stimulated 20- to 160-fold by incubation with beta-migrating very low density lipoproteins (beta-VLDL, density less than 1.006 g/ml) isolated from the plasma of cholesterol-fed dogs. Three other cholesterol-rich lipoprotein fractions obtained from the plasma of the same hypercholesterolemic do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 40 7  شماره 

صفحات  -

تاریخ انتشار 1999