Simvastatin inhibits ischemia/reperfusion injury-induced apoptosis of retinal cells via downregulation of the tumor necrosis factor-α/nuclear factor-κB pathway
نویسندگان
چکیده
Simvastatin, which is widely used in the prevention and treatment of hyperlipidemia-associated diseases, has been reported to enhance the survival of retinal ganglion cells (RGCs) in a model of retinal ischemia/reperfusion (IR) injury. However, the underlying mechanism of the anti-apoptotic effects of simvastatin on the retina have yet to be elucidated. In the present study, rats were treated with simvastatin or saline for 7 days prior to IR via ligation of the right cephalic artery. The results showed that simvastatin prevented the apoptosis of RGCs and cells in the inner nuclear layer. Furthermore, simvastatin regulated the expression of apoptosis-associated proteins. The expression levels of the anti-apoptotic protein B-cell lymphoma-2 were upregulated 4 and 24 h after IR in the simvastatin/IR group compared to those in the saline/IR group. Conversely, the levels of pro-apoptotic protein Bax were downregulated in the simvastatin/IR group compared to those in the saline/IR group. Furthermore, the results of the present study showed for the first time, to the best of our knowledge, that simvastatin decreased IR injury-induced tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) expression in the retina. These findings strongly suggested that simvastatin inhibits apoptosis following IR-induced retinal injury by inhibition of the TNF-α/NF-κB pathway. The present study also provided a rationale for developing therapeutic methods to treat IR-induced retinal injury in the clinic.
منابع مشابه
Obestatin inhibits apoptosis and astrogliosis of hippocampal neurons following global cerebral ischemia reperfusion via antioxidant and anti-inflammatory mechanisms
Objective(s): Obestatin is a newly discovered peptide with antioxidant activities in different animal models. Recent studies have shown that Obestatin inhibits apoptosis following cardiac ischemia/reperfusion injury. Brain ischemia/reperfusion induces irreversible damage especially in the hippocampus area. This study aimed at examining the protective impact of Obestati...
متن کاملBerberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways
Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-rep...
متن کاملThe protective effect of glycyrrhizin on hepatic ischemia-reperfusion injury in rats and possible related signal pathway
Objective(s): To investigate the protective effect of glycyrrhizin (GL) on hepatic ischemia-reperfusion injury (HIRI).Materials and Methods: Forty SD rats were randomly divided into sham group, HIRI group, GL 100 mg/kg group, and GL 200 mg/kg group. The pathological alterations of liver tissue in each group were observed. The levels of a...
متن کاملMonascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway
Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...
متن کاملProtective effects of 2-methoxycinnamaldehyde an active ingredients of Cinnamomum cassia on warm hepatic ischemia reperfusion injury in rat model
Objective(s): Hepatic ischemia/reperfusion injury (IRI) is one of the major causes of hepatic failure during liver transplantation, trauma, and infections. The present study investigated the protective effect of intra-portal administration of 2-methoxycinnamaldehyde (2-MCA) on hepatic IRI in rats. Materials and Methods: Twenty-four rats ...
متن کامل