Discovering Contiguous Sequential Patterns in Network-Constrained Movement

نویسنده

  • CAN YANG
چکیده

A large proportion of movement in urban area is constrained to a road network such as pedestrian, bicycle and vehicle. That movement information is commonly collected by Global Positioning System (GPS) sensor, which has generated large collections of trajectories. A contiguous sequential pattern (CSP) in these trajectories represents a certain number of objects traversing a sequence of spatially contiguous edges in the network, which is an intuitive way to study regularities in network-constrained movement. CSPs are closely related to route choices and traffic flows and can be useful in travel demand modeling and transportation planning. However, the efficient and scalable extraction of CSPs and effective visualization of the heavily overlapping CSPs are remaining challenges. To address these challenges, the thesis develops two algorithms and a visual analytics system. Firstly, a fast map matching (FMM) algorithm is designed for matching a noisy trajectory to a sequence of edges traversed by the object with a high performance. Secondly, an algorithm called bidirectional pruning based closed contiguous sequential pattern mining (BP-CCSM) is developed to extract sequential patterns with closeness and contiguity constraint from the map matched trajectories. Finally, a visual analytics system called sequential pattern explorer for trajectories (SPET) is designed for interactive mining and visualization of CSPs in a large collection of trajectories. Extensive experiments are performed on a real-world taxi trip GPS dataset to evaluate the algorithms and visual analytics system. The results demonstrate that FMM achieves a superior performance by replacing repeated routing queries with hash table lookups. BP-CCSM considerably outperforms three state-of-the-art algorithms in terms of running time and memory consumption. SPET enables the user to efficiently and conveniently explore spatial and temporal variations of CSPs in network-constrained movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Sequential and Non-Sequential Patterns in Predictive Web Usage Mining Tasks

We describe an efficient framework for Web personalization based on sequential and non-sequential pattern discovery from usage data. Our experimental results performed on real usage data indicate that more restrictive patterns, such as contiguous sequential patterns (e.g., frequent navigational paths) are more suitable for predictive tasks, such as Web prefetching, which involve predicting whic...

متن کامل

Mining closed and multi-supports-based sequential pattern in high-dimensional dataset

Previous mining algorithms on high dimensional datasets, such as biological dataset, create very large patterns sets as a result which includes small and discontinuous sequential patterns. These patterns do not bear any useful information for usage. Mining sequential patterns in such sequences need to consider different forms of patterns, such as contiguous patterns, local patterns which appear...

متن کامل

Efficient Discovering of Top-K Sequential Patterns in Event-Based Spatio-Temporal Data

We consider the problem of discovering sequential patterns from event-based spatio-temporal data. The dataset is described by a set of event types and their instances. Based on the given dataset, the task is to discover all significant sequential patterns denoting some attraction relation between event types occurring in a pattern. Already proposed algorithms discover all significant sequential...

متن کامل

TWINCLE : A Constrained Sequential Rule Mining Algorithm for Event Logs

Discovering workflow patterns in event-logs is important for many organizations to understand and optimize organizational processes. Although numerous algorithms have been proposed in the literature to discover patterns in sequences of symbols, most of them are inadequate to discover patterns in rich event-log data. In this paper, motivated by the analysis of patient pathways in the health doma...

متن کامل

Constraint-based sequential pattern mining: a pattern growth algorithm incorporating compactness, length and monetary

Sequential pattern mining is advantageous for several applications for example, it finds out the sequential purchasing behavior of majority customers from a large number of customer transactions. However, the existing researches in the field of discovering sequential patterns are based on the concept of frequency and presume that the customer purchasing behavior sequences do not fluctuate with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017