A Non-Linear Deterministic Model for Regulation of Diauxic Lag on Cellobiose by the Pneumococcal Multidomain Transcriptional Regulator CelR
نویسندگان
چکیده
When grown on glucose and beta-glucosides, S. pneumoniae shows sequential use of sugars resulting in diauxic growth with variable time extent of the lag phase separating the biphasic growth curve. The pneumococcal beta-glucoside uptake locus containing the PTS transporter spr0276-82, is regulated by a multi-domain transcriptional regulator CelR. In this work, we address the contribution of phosphorylation of the phosphorylable cysteine in the EIIB domain of CelR to diauxic lag. Utilising site-directed mutagenesis of the phosphorylable amino acids in the EIIB and EIIA domains of CelR, we show that the EIIB domain activation is linked to the duration of the lag phase. Analysis of mutants for other PTS systems indicates that a second beta-glucoside PTS (spr0505), not able to support growth on cellobiose, is responsible for the lag during diauxic growth. A mathematical model of the process is devised together with a nonlinear identification procedure which provides model parameter estimates characterizing the single phases of bacterial growth. Parameter identification performed on data recorded in appropriate experiments on mutants allows for establishing a relationship between a specific model parameter, the EIIB domain and the time extent of the diauxic lag. The experimental results and the related insights provided by the mathematical model provide evidence that the conflicting activation of the CelR regulator is at the origin of the lag phase during sequential growth on glucose and cellobiose. This data is the first description of diauxic lag regulation involving two PTS and a multidomain regulator and could serve as a promising approach for studying the S. pneumoniae growth process on complex carbon sources as possibly encountered in the human host.
منابع مشابه
Transcriptional regulation of the cellobiose operon of Streptococcus mutans.
The ability of Streptococcus mutans to catabolize cellobiose, a beta-linked glucoside generated during the hydrolysis of cellulose, is shown to be regulated by a transcriptional regulator, CelR, which is encoded by an operon with a phospho-beta-glucosidase (CelA) and a cellobiose-specific sugar phosphotransferase system (PTS) permease (EII(Cel)). The roles of CelR, EII(Cel) components, and cert...
متن کاملCellobiose-Mediated Gene Expression in Streptococcus pneumoniae: A Repressor Function of the Novel GntR-Type Regulator BguR
The human pathogen Streptococcus pneumoniae has the ability to use the carbon- and energy source cellobiose due to the presence of a cellobiose-utilizing gene cluster (cel locus) in its genome. This system is regulated by the cellobiose-dependent transcriptional activator CelR, which has been previously shown to contribute to pneumococcal virulence. To get a broader understanding of the respons...
متن کاملA celR mutation affecting transcription of cellulase genes in Thermobifida fusca.
Biosynthesis of extracellular cellulases in the cellulose-degrading actinomycete Thermobifida fusca is controlled by a transcriptional regulator, CelR, and cellobiose, which acts as an inducer interfering with the CelR-DNA interaction. We report the identification and characterization of a mutation in the celR gene that changes Ala(55) in the hinge helix of CelR to Thr. The wild-type and mutant...
متن کاملCharacterization and cloning of celR, a transcriptional regulator of cellulase genes from Thermomonospora fusca.
CelR, a protein that regulates transcription of cellulase genes in Thermomonospora fusca (Actinomycetaceae) was purified to homogeneity. A 6-kilobase NotI-SacI fragment of T. fusca DNA containing the celR gene was cloned into Esherichia coli and sequenced. The celR gene encodes a 340-residue polypeptide that is highly homologous to members of the GalR-LacI family of bacterial transcriptional re...
متن کاملGenomics of Aerobic Cellulose Utilization Systems in Actinobacteria
Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carboh...
متن کامل