Modeling circulation and thermal structure in Lake Michigan: annual cycle and interannual variability

نویسندگان

  • Dmitry Beletsky
  • David J. Schwab
چکیده

A three-dimensional primitive equation numerical model was applied to Lake Michigan for the periods 1982–1983 and 1994–1995 to study seasonal and interannual variability of lake-wide circulation and thermal structure in the lake. The model was able to reproduce all of the basic features of the thermal structure in Lake Michigan: spring thermal bar, full stratification, deepening of the thermocline during the fall cooling, and finally, an overturn in the late fall. Large-scale circulation patterns tend to be cyclonic (counterclockwise), with cyclonic circulation within each subbasin. The largest currents and maximum cyclonic vorticity occur in the fall and winter when temperature gradients are low but wind stresses are strongest. The smallest currents and minimum cyclonic vorticity occur in spring and summer when temperature gradients are strong but wind stresses are weakest. All these facts are in agreement with observations. The main shortcoming of the model was that it tended to predict a more diffuse thermocline than was indicated by observations and explained only up to half of the variance observed in horizontal currents at timescales shorter than a day.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the 1998–2003 summer circulation and thermal structure in Lake Michigan

[1] A three-dimensional primitive equation numerical model was applied to Lake Michigan on a 2 km grid for 6 consecutive years to study interannual variability of summer circulation and thermal structure in 1998–2003. The model results were compared to long-term observations of currents and temperature at seven moorings and two NOAA buoys. The accuracy of modeled currents improved considerably ...

متن کامل

An investigation of the thermal response to meteorological forcing in a hydrodynamic model of Lake Superior

Lake Superior, the largest lake in the world by surface area and third largest by volume, features strong spatiotemporal thermal variability due to its immense size and complex bathymetry. The objectives of this study are to document our recent modeling experiences on the simulation of the lake thermal structure and to explore underlying dynamic explanations of the observed modeling success. In...

متن کامل

Modeling nearshore-offshore exchange in Lake Superior

Lake Superior's ecosystem includes distinct nearshore and offshore food webs linked by hydrodynamic processes that transport water and tracers along and across shore. The scales over which these processes occur and their sensitivity to increasing summer surface temperatures are not well understood. This study investigated horizontal mixing between nearshore and offshore areas of Lake Superior o...

متن کامل

Changes in the Seasonal Cycle of Temperature and Atmospheric Circulation

The vast majority of variability in the instrumental surface temperature record is at annual frequencies. Systematic changes in the yearly Fourier component of surface temperature have been observed since the midtwentieth century, including a shift toward earlier seasonal transitions over land. Here it is shown that the variability in the amplitude and phase of the annual cycle of surface tempe...

متن کامل

Sensitivity of summer Lake Superior thermal structure to meteorological forcing

We use a one-dimensional model, forced with realistic meteorological measurements, to determine to first order the sensitivity of summer surface water temperature, heat content, and vertical stratification scale to three forcing variables: air temperature, wind speed, and previous winter ice cover, all three of which have exhibited long-term trends over the last few decades. Summer-averaged sur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001