The ParB-parS Chromosome Segregation System Modulates Competence Development in Streptococcus pneumoniae

نویسندگان

  • Laetitia Attaiech
  • Anita Minnen
  • Morten Kjos
  • Stephan Gruber
  • Jan-Willem Veening
چکیده

UNLABELLED ParB proteins bind centromere-like DNA sequences called parS sites and are involved in plasmid and chromosome segregation in bacteria. We previously showed that the opportunistic human pathogen Streptococcus pneumoniae contains four parS sequences located close to the origin of replication which are bound by ParB. Using chromatin immunoprecipitation (ChIP), we found here that ParB spreads out from one of these parS sites, parS(-1.6°), for more than 5 kb and occupies the nearby comCDE operon, which drives competence development. Competence allows S. pneumoniae to take up DNA from its environment, thereby mediating horizontal gene transfer, and is also employed as a general stress response. Mutating parS(-1.6°) or deleting parB resulted in transcriptional up-regulation of comCDE and ssbB (a gene belonging to the competence regulon), demonstrating that ParB acts as a repressor of competence. However, genome-wide transcription analysis showed that ParB is not a global transcriptional regulator. Different factors, such as the composition of the growth medium and antibiotic-induced stress, can trigger the sensitive switch driving competence. This work shows that the ParB-parS chromosome segregation machinery also influences this developmental process. IMPORTANCE Streptococcus pneumoniae (pneumococcus) is an important human pathogen responsible for more than a million deaths each year. Like all other organisms, S. pneumoniae must be able to segregate its chromosomes properly. Not only is understanding the molecular mechanisms underlying chromosome segregation in S. pneumoniae therefore of fundamental importance, but also, this knowledge might offer new leads for ways to target this pathogen. Here, we identified a link between the pneumococcal chromosome segregation system and the competence-developmental system. Competence allows S. pneumoniae to take up and integrate exogenous DNA in its chromosome. This process plays a crucial role in successful adaptation to--and escape from--host defenses, antibiotic treatments, and vaccination strategies. We show that the chromosome segregation protein ParB acts as a repressor of competence. To the best of our knowledge, this is the first example of a ParB protein controlling bacterial competence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae.

Segregation of replicated chromosomes is an essential process in all organisms. How bacteria, such as the oval-shaped human pathogen Streptococcus pneumoniae, efficiently segregate their chromosomes is poorly understood. Here we show that the pneumococcal homologue of the DNA-binding protein ParB recruits S. pneumoniae condensin (SMC) to centromere-like DNA sequences (parS) that are located nea...

متن کامل

Insights into ParB spreading from the complex structure of Spo0J and parS.

Spo0J (stage 0 sporulation protein J, a member of the ParB superfamily) is an essential component of the ParABS (partition system of ParA, ParB, and parS)-related bacterial chromosome segregation system. ParB (partition protein B) and its regulatory protein, ParA, act cooperatively through parS (partition S) DNA to facilitate chromosome segregation. ParB binds to chromosomal DNA at specific par...

متن کامل

ParABS System in Chromosome Partitioning in the Bacterium Myxococcus xanthus

Chromosome segregation is an essential cellular function in eukaryotic and prokaryotic cells. The ParABS system is a fundamental player for a mitosis-like process in chromosome partitioning in many bacterial species. This work shows that the social bacterium Myxococcus xanthus also uses the ParABS system for chromosome segregation. Its large prokaryotic genome of 9.1 Mb contains 22 parS sequenc...

متن کامل

Regional Control of Chromosome Segregation in Pseudomonas aeruginosa

Chromosome segregation in bacteria occurs concomitantly with DNA replication, and the duplicated regions containing the replication origin oriC are generally the first to separate and migrate to their final specific location inside the cell. In numerous bacterial species, a three-component partition machinery called the ParABS system is crucial for chromosome segregation. This is the case in th...

متن کامل

Permissive zones for the centromere-binding protein ParB on the Caulobacter crescentus chromosome

Proper chromosome segregation is essential in all living organisms. In Caulobacter crescentus, the ParA-ParB-parS system is required for proper chromosome segregation and cell viability. The bacterial centromere-like parS DNA locus is the first to be segregated following chromosome replication. parS is bound by ParB protein, which in turn interacts with ParA to partition the ParB-parS nucleopro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015