Photoinduced Disaggregation of TiO2 Nanoparticles Enables Transdermal Penetration

نویسندگان

  • Samuel W. Bennett
  • Dongxu Zhou
  • Randall Mielke
  • Arturo A. Keller
چکیده

Under many aqueous conditions, metal oxide nanoparticles attract other nanoparticles and grow into fractal aggregates as the result of a balance between electrostatic and Van Der Waals interactions. Although particle coagulation has been studied for over a century, the effect of light on the state of aggregation is not well understood. Since nanoparticle mobility and toxicity have been shown to be a function of aggregate size, and generally increase as size decreases, photo-induced disaggregation may have significant effects. We show that ambient light and other light sources can partially disaggregate nanoparticles from the aggregates and increase the dermal transport of nanoparticles, such that small nanoparticle clusters can readily diffuse into and through the dermal profile, likely via the interstitial spaces. The discovery of photoinduced disaggregation presents a new phenomenon that has not been previously reported or considered in coagulation theory or transdermal toxicological paradigms. Our results show that after just a few minutes of light, the hydrodynamic diameter of TiO(2) aggregates is reduced from ∼280 nm to ∼230 nm. We exposed pigskin to the nanoparticle suspension and found 200 mg kg(-1) of TiO(2) for skin that was exposed to nanoparticles in the presence of natural sunlight and only 75 mg kg(-1) for skin exposed to dark conditions, indicating the influence of light on NP penetration. These results suggest that photoinduced disaggregation may have important health implications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advanced Analgesic Drug Delivery and Nanobiotechnology

Transdermal administration of analgesic medications offers several benefits over alternative routes of administration, including a decreased systemic drug load with fewer side effects, and avoidance of drug degradation by the gastrointestinal tract. Transdermal administration also offers a convenient mode of drug administration over an extended period of time, particularly desirable in pain med...

متن کامل

Photoinduced reversible shape conversion of silver nanoparticles assisted by TiO₂.

Silver nanoprisms were transformed into nanodecahedra through photoinduction of ultraviolet (UV) light in the presence of titanium dioxide (TiO2) quantum dots (QDs). Subsequently, the silver nanodecahedra were reconverted to silver nanoprisms under sodium lamp if there was sufficient citrate in the reaction system. The localized surface plasmon resonance (LSPR) optical properties of silver nano...

متن کامل

Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate.

The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively coupled plasma mass spe...

متن کامل

Effect of Ultrasound-Enhanced Transdermal Drug Delivery Efficiency of Nanoparticles and Brucine

Brucine is the active component in traditional Chinese medicine "Ma-Qian-Zi" (Strychnos nux-vomica Linn), with capabilities of analgesic, anti-inflammatory, anti-tumor and so on. It is crucial how to break through the impact of cuticle skin which reduces the penetration of drugs to improve drug transmission rate. The aim of this study is to improve the local drug concentration by using ultrasou...

متن کامل

Scalable hybrid chemical manufacture to photothermal therapy: PEG-capped phototransducers

Ag-TiO2@polyethylene glycol (PEG) nanoparticles were continuously obtained in a single-pass configuration by appropriately reacting freshly flame-synthesized TiO2 with Ag formed in an ultrasonic aqueous medium containing PEG. When the proposed synthesis was kept constant, the production rate for Ag-TiO2@PEG nanoparticles reached approximately 3 g/h while only using a combination of a lab-scale ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012