Increased biofilm formation ability in Klebsiella pneumoniae after short‐term exposure to a simulated microgravity environment
نویسندگان
چکیده
Biofilm formation is closely related to the pathogenetic processes of Klebsiella pneumoniae, which frequently causes infections in immunocompromised individuals. The immune system of astronauts is compromised in spaceflight. Accordingly, K. pneumoniae, which used to be isolated from orbiting spacecraft and astronauts, poses potential threats to the health of astronauts and mission security. Microgravity is a key environmental cue during spaceflight. Therefore, determining its effects on bacterial biofilm formation is necessary. In this study, K. pneumoniae ATCC BAA-1705 was exposed to a simulated microgravity (SMG) environment. K. pneumoniae grown under SMG formed thicker biofilms compared with those under normal gravity (NG) control after 2 weeks of subculture. Two indicative dyes (i.e., Congo red and calcofluor) specifically binding to cellulose fibers and/or fimbriae were utilized to reconfirm the enhanced biofilm formation ability of K. pneumoniae grown under SMG. Further analysis showed that the biofilms formed by SMG-treated K. pneumoniae were susceptible to cellulase digestion. Yeast cells mannose-resistant agglutination by K. pneumoniae type 3 fimbriae was more obvious in the SMG group, which suggests that cellulose production and type 3 fimbriae expression in K. pneumoniae were both enhanced under the SMG condition. Transcriptomic analysis showed that 171 genes belonging to 15 functional categories were dysregulated in this organism exposed to the SMG conditions compared with those in the NG group, where the genes responsible for the type 3 fimbriae (mrkABCDF) and its regulator (mrkH) were upregulated.
منابع مشابه
Comparison of Congo Red Agar methods and tube turbidity in biofilm formation in Klebsiella pneumoniae isolates from cases of urinary tract infections in Samen Al-Aeme Hospital Bojnourd
Introduction Biofilm can be called a bacterial community that often forms on living or non-living surfaces and is common in natural, industrial, and hospital environments. Klebsiella pneumoniae as a pathogen has the potential to produce biofilms. Understanding biofilm formation in biofilm-forming bacteria is important. The aim of this study was to investigate the biofilm formation in isolates ...
متن کاملInvestigation of the Relationship between Antibiotic Resistance and Biofilm Production in Klebsiella pneumoniae Isolated from Hamadan Hospitals, Iran
Background and Objective: The role of biofilm formation by bacteria has been considered as an important stage in the pathogenesis of Klebsiella pneumoniae. This pathogen is one of the most important opportunistic pathogen agents of nosocomial infections, such as pneumonia, urinary tract infections, invasive infections, and surgical site infections. This study aimed to investigate the biofilm pr...
متن کاملThe effect of subinhibitory concentrations of satureja spp. essential oils on the biofilm formation and urease activity of Klebsiella pneumoniae
Background: Klebsiella pneumoniae is one of the most important bacteria that cause nosocomial infections. This opportunistic pathogen has a high potential for antibiotic resistance and can generate a thick layer of biofilm. Nowadays, antibiotic resistant strains are emerging and widely spreading worldwide. Thus, it is necessary to combat drug-resistant strains through the use of novel drugs (su...
متن کاملBiofilm formation in vitro and virulence in vivo of mutants of Klebsiella pneumoniae.
One of the early stages of Klebsiella pneumoniae airway infections may involve biofilm formation. Bacterial biofilm formation is frequently investigated using in vitro techniques that facilitate identification and analysis of individual genes. We investigated the correlation between K. pneumoniae biofilm formation in vitro and ability to cause infection in vivo following construction of a bank ...
متن کاملEvaluation of Antimicrobial and Anti-biofilm Effects of Copper Nanoparticles Synthesized by Artemisia Scoparia Extract Against Multidrug-Resistant Klebsiella pneumoniae Strains and Analysis of Biofilm Gene Expression
Background: Klebsiella pneumoniae is one of the most important hospital opportunistic pathogens that have become resistant to many antibiotics due to biofilm formation. The aim of this study was to synthesize copper nanoparticles using Artemisia scoparia extract, to investigate its antimicrobial and anti-biofilm effects against K. pneumoniae strains. Methods: In this experimental study, 100 cli...
متن کامل