Direct evidence for cortical suppression of somatosensory afferents during visuomotor adaptation.

نویسندگان

  • Pierre-Michel Bernier
  • Borís Burle
  • Franck Vidal
  • Thierry Hasbroucq
  • Jean Blouin
چکیده

Upon exposure to novel visuomotor relationships, the information carried by visual and proprioceptive signals becomes discrepant, often disrupting motor execution. It has been shown that degradation of the proprioceptive sense (arising either from disease or experimental manipulation) enhances performance when drawing with mirror-reversed vision. Given that the central nervous system can exert a dynamic control over the transmission of afferent signals, reducing proprioceptive inflow to cortical areas could be part of the normal adaptive mechanisms deployed in healthy humans upon exposure to novel visuomotor environments. Here we address this issue by probing the transmission of somatosensory afferents throughout the course of adaptation to a visuomotor conflict, by recording median nerve somatosensory evoked potentials. We show that early exposure to tracing with mirror-reversed vision is accompanied by substantial proprioceptive suppression occurring in the primary somatosensory cortex (S1). This proprioceptive gating is gradually alleviated as performance increases with adaptation, returning to baseline levels. Peripheral and spinal evoked potentials were not modulated throughout, suggesting that the gating acted to reduce cortico-cortico excitability directly within S1. These modulations provide neurophysiological evidence for flexibility in sensory integration during visuomotor adaptation, which may functionally serve to reduce the sensory conflict until the visuo-proprioceptive mapping is updated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficacy of Stochastic Vestibular Stimulation to Improve Locomotor Performance During Adaptation to Visuomotor and Somatosensory Distortion

Citation: Temple DR, De Dios YE, Layne CS, Bloomberg JJ and Mulavara AP (2018) Efficacy of Stochastic Vestibular Stimulation to Improve Locomotor Performance During Adaptation to Visuomotor and Somatosensory Distortion. Front. Physiol. 9:301. doi: 10.3389/fphys.2018.00301 Efficacy of Stochastic Vestibular Stimulation to Improve Locomotor Performance During Adaptation to Visuomotor and Somatosen...

متن کامل

Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity

Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...

متن کامل

Dissociating the Roles of the Cerebellum and Motor Cortex During Adaptive Learning

Adaptation to a novel visuomotor transformation has revealed important principles regarding learning and memory. Computational and behavioral studies have suggested that acquisition and retention of a new visuomotor transformation are distinct processes. However, this dissociation has never been clearly shown. Here, participants made fast reaching movements while unexpectedly a 30-degree visuom...

متن کامل

Convergence of submodality-specific input onto neurons in primary somatosensory cortex.

At the somatosensory periphery, slowly adapting type 1 (SA1) and rapidly adapting (RA) afferents respond very differently to step indentations: SA1 afferents respond throughout the entire stimulus interval (sustained response), whereas RA afferents respond only at stimulus onset (on response) and offset (off response). We recorded the responses of cortical neurons to step indentations and found...

متن کامل

Surround suppression and sparse coding in visual and barrel cortices

During natural vision the entire retina is stimulated. Likewise, during natural tactile behaviors, spatially extensive regions of the somatosensory surface are co-activated. The large spatial extent of naturalistic stimulation means that surround suppression, a phenomenon whose neural mechanisms remain a matter of debate, must arise during natural behavior. To identify common neural motifs that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 19 9  شماره 

صفحات  -

تاریخ انتشار 2009