Assaying Environmental Nickel Toxicity Using Model Nematodes
نویسندگان
چکیده
Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.
منابع مشابه
Testing environmental pollutants on soil organisms: a simple assay to investigate the toxicity of environmental pollutants on soil organisms, using CdCl2 and nematodes.
Juvenile stages of Caenorhabditis elegans (nematoda) were isolated and grown in an axenic medium containing various concentrations of CdCl2. Growth of the organisms was significantly reduced from a level of 1 microM CdCl2. Reproduction of the nematodes was also reduced from that 1 microM exposure level. At levels of 160 and 320 microM, growth was retarded at the early juvenile stages and the or...
متن کاملImproving Removal of Nickel from Wastewater using Palm Leaf Ash as a Biosorbent
Nickel (Ni) as a heavy metal due to its toxicity should be removed from wastewater and aquatic environments using efficient technology. The aim of this study was to remove Ni from an aqueous solution using palm leaf ash produced in a furnace. To do so, kinetic and thermodynamic experiments were conducted on the adsorption process. Moreover, the effect of time, pH, ads...
متن کاملAbsorbability and translocation of Nickel from soil using the sunflower plant (Helianthus annuus)
Today, soil pollution with heavy metals is a major environmental concern across the world. Phytoremediation is defined as a technique through which plants are able to absorb contaminants and potently recover the soil that is polluted by heavy metals. The present study aimed to investigate the level of nickel concentration in the roots, stems, and leaves of sunflower, as well as the mobility of ...
متن کاملInfluence of water quality and age on nickel toxicity to fathead minnows (Pimephales promelas).
This research characterized the effects of water quality and organism age on the toxicity of nickel (Ni) to fathead minnows (Pimephales promelas) to facilitate the accurate development of site-specific water-quality criteria. Nickel sulfate hexahydrate (NiSO4 x 6H2O) was used as the Ni source for performing acute toxicity tests (median lethal concentration after 96-h exposure [96-h LC50]) with ...
متن کاملThe nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity.
Fifteen organic phosphate pesticides were tested by computer tracking for their acute behavioral toxicity with the nematode Caenorhabditis elegans. Thirteen of these 15 chemicals are used as insecticides and are anticholesterase agents. The other two chemicals are used as herbicides. EC50 values for each chemical were compared to the corresponding LD50 acute lethality value in rats and mice. Or...
متن کامل