Heart Failure Multiple Reaction Monitoring to Identify Site-Specific Troponin I Phosphorylated Residues in the Failing Human Heart

نویسندگان

  • Pingbo Zhang
  • Jonathan A. Kirk
  • Weihua Ji
  • Cristobal G. dos Remedios
  • David A. Kass
  • Jennifer E. Van Eyk
  • Anne M. Murphy
چکیده

Background—Human cardiac troponin I is known to be phosphorylated at multiple amino acid residues by several kinases. Advances in mass spectrometry allow sensitive detection of known and novel phosphorylation sites and measurement of the level of phosphorylation simultaneously at each site in myocardial samples. Methods and Results—On the basis of in silico prediction and liquid chromatography/mass spectrometry data, 14 phosphorylation sites on cardiac troponin I, including 6 novel residues (S4, S5, Y25, T50, T180, S198), were assessed in explanted hearts from end-stage heart failure transplantation patients with ischemic heart disease or idiopathic dilated cardiomyopathy and compared with samples obtained from nonfailing donor hearts (nϭ10 per group). Thirty mass spectrometry– based multiple reaction monitoring quantitative tryptic peptide assays were developed for each phosphorylatable and corresponding nonphosphorylated site. The results show that in heart failure there is a decrease in the extent of phosphorylation of the known protein kinase A sites (S22, S23) and other newly discovered phosphorylation sites located in the N-terminal extension of cardiac troponin I (S4, S5, Y25), an increase in phosphorylation of the protein kinase C sites (S41, S43, T142), and an increase in phosphorylation of the IT-arm domain residues (S76, T77) and C-terminal domain novel phosphorylation sites of cardiac troponin I (S165, T180, S198). In a canine dyssynchronous heart failure model, enhanced phosphorylation at 3 novel sites was found to decline toward control after resynchronization therapy. Conclusions—Selective, functionally significant phosphorylation alterations occurred on individual residues of cardiac troponin I in heart failure, likely reflecting an imbalance in kinase/phosphatase activity. Such changes can be reversed by cardiac resynchronization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple reaction monitoring to identify site-specific troponin I phosphorylated residues in the failing human heart.

BACKGROUND Human cardiac troponin I is known to be phosphorylated at multiple amino acid residues by several kinases. Advances in mass spectrometry allow sensitive detection of known and novel phosphorylation sites and measurement of the level of phosphorylation simultaneously at each site in myocardial samples. METHODS AND RESULTS On the basis of in silico prediction and liquid chromatograph...

متن کامل

Re-expression of fetal troponin isoforms in the postinfarction failing heart of the rat.

Molecular switches between the troponin T and I isoforms are known to occur in various conditions, but the results from studies of failing human hearts with various etiologies are contradictory and it is not certain whether troponin isoform changes occur. Therefore, the molecular switching of troponin isoforms during normal development and heart failure (HF) after myocardial infarction were inv...

متن کامل

Targeted proteomics for determining phosphorylation site-specific associations in cardiovascular disease.

Posttranslational modifications (PTMs) are chemical or physical changes to proteins that can alter structure/ function relationships and thus influence catalysis, cell localization, and interactions with other proteins and biomolecules. There are 200 recognized PTMs, generating a vast scope for altering protein function and increasing the potential for complex regulatory crosstalk between diver...

متن کامل

PKCα-Specific Phosphorylation of the Troponin Complex in Human Myocardium: A Functional and Proteomics Analysis

AIMS Protein kinase Cα (PKCα) is one of the predominant PKC isoforms that phosphorylate cardiac troponin. PKCα is implicated in heart failure and serves as a potential therapeutic target, however, the exact consequences for contractile function in human myocardium are unclear. This study aimed to investigate the effects of PKCα phosphorylation of cardiac troponin (cTn) on myofilament function i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012