An advanced expiratory circuit for the recovery of perfluorocarbon liquid from non-saturated perfluorocarbon vapour during partial liquid ventilation: an experimental model
نویسندگان
چکیده
BACKGROUND The loss of perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be minimized both to prevent perfluorocarbon vapour entering the atmosphere and to re-use the recovered PFC liquid. Using a substantially modified design of our previously described condenser, we aimed to determine how much perfluorocarbon liquid could be recovered from gases containing PFC and water vapour, at concentrations found during partial liquid ventilation, and to determine if the amount recovered differed with background flow rate (at flow rates suitable for use in neonates). METHODS The expiratory line of a standard ventilator circuit set-up was mimicked, with the addition of two condensers. Perfluorocarbon (30 mL of FC-77) and water vapour, at concentrations found during partial liquid ventilation, were passed through the circuit at a number of flow rates and the percentage recovery of the liquids measured. RESULTS From 14.2 mL (47%) to 27.3 mL (91%) of the infused 30 mL of FC-77 was recovered at the flow rates studied. Significantly higher FC-77 recovery was obtained at lower flow rates (ANOVA with Bonferroni's multiple comparison test, p < 0.0001). As a percentage of the theoretical maximum recovery, 64 to 95% of the FC-77 was recovered. Statistically significantly less FC-77 was recovered at 5 Lmin(-1) (ANOVA with Bonferroni's multiple comparison test, p < 0.0001). Amounts of perfluorocarbon vapour recovered were 47%, 50%, 81% and 91% at flow rates of 10, 5, 2 and 1 Lmin(-1), respectively. CONCLUSION Using two condensers in series 47% to 91% of perfluorocarbon liquid can be recovered, from gases containing perfluorocarbon and water vapour, at concentrations found during partial liquid ventilation.
منابع مشابه
The use of chilled condensers for the recovery of perfluorocarbon liquid in an experimental model of perfluorocarbon vapour loss during neonatal partial liquid ventilation
BACKGROUND Perfluorocarbon (PFC) vapour in the expired gases during partial liquid ventilation should be prevented from entering the atmosphere and recovered for potential reuse. This study aimed to determine how much PFC liquid could be recovered using a conventional humidified neonatal ventilator with chilled condensers in place of the usual expiratory ventilator circuit and whether PFC liqui...
متن کاملPartial liquid ventilation: effects of liquid volume and ventilatory settings on perfluorocarbon evaporation.
During partial liquid ventilation perfluorocarbons are eliminated mainly by evaporation via the airways. The effects of intrapulmonary perfluorocarbon volume, respiratory rate, tidal volume, as well as the level of end-expiratory pressure on perfluorocarbon elimination from isolated lungs, were studied. Nonperfused rabbit lungs underwent partial liquid ventilation (2-15 mL x kg(-1) perfluorocar...
متن کاملSubretinal Perfluorocarbon Liquid (PFCL) after Vitrectomy; A Case Report And Review of Literature
Purpose: To report a case of retained subretinal perfluorocarbon liquid (PFCL) after vitrectomy and to discuss the diagnosis and management of subretinal PFCL based on literature review. Case Report: A 57-year-old female patient underwent 3-port 23-gauge vitrectomy for advanced proliferative diabetic retinopathy and combined tractional and rhegmatogenous retinal detachment. During the surgery, ...
متن کاملPartial liquid ventilation improves gas exchange and increases EELV in acute lung injury.
Gas exchange is improved during partial liquid ventilation with perfluorocarbon in animal models of acute lung injury. The specific mechanisms are unproved. We measured end-expiratory lung volume (EELV) by null-point body plethysmography in anesthetized sheep. Measurements of gas exchange and EELV were made before and after acute lung injury was induced with intravenous oleic acid to decrease E...
متن کاملChanges in pulmonary blood flow during gaseous and partial liquid ventilation in experimental acute lung injury.
BACKGROUND It has been proposed that partial liquid ventilation (PLV) causes a compression of the pulmonary vasculature by the dense perfluorocarbons and a subsequent redistribution of pulmonary blood flow from dorsal to better-ventilated middle and ventral lung regions, thereby improving arterial oxygenation in situations of acute lung injury. METHODS After induction of acute lung injury by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BioMedical Engineering OnLine
دوره 5 شماره
صفحات -
تاریخ انتشار 2006