A New Approach to the Quadrature Rules with Gaussian Weights and Nodes

نویسندگان

  • Giuliana Criscuolo
  • Salvatore Cuomo
چکیده

To compute integrals on bounded or unbounded intervals we propose a new numerical approach by using weights and nodes of the classical Gauss quadrature rules. An account of the error and the convergence theory is given for the proposed quadrature formulas which have the advantage of reducing the condition number of the linear system arising when applying Nyström methods to solve integral equations. Numerical examples confirming the theoretical results are provided to illustrate the accuracy of the introduced method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted quadrature rules with binomial nodes

In this paper, a new class of a weighted quadrature rule is represented as --------------------------------------------  where  is a weight function,  are interpolation nodes,  are the corresponding weight coefficients and denotes the error term. The general form of interpolation nodes are considered as   that  and we obtain the explicit expressions of the coefficients  using the q-...

متن کامل

Complex Gaussian quadrature for oscillatory integral transforms

The classical theory of Gaussian quadrature assumes a positive weight function. We will show that in some cases Gaussian rules can be constructed with respect to an oscillatory weight, yielding methods with complex quadrature nodes and positive weights. These rules are well suited for highly oscillatory integrals because they attain optimal asymptotic order. We show that for the Fourier oscilla...

متن کامل

Application of CAS wavelet to construct quadrature rules for numerical ‎integration‎‎

In this paper‎, ‎based on CAS wavelets we present quadrature rules for numerical solution‎ ‎of double and triple integrals with variable limits of integration‎. ‎To construct new method‎, ‎first‎, ‎we approximate the unknown function by CAS wavelets‎. ‎Then by using suitable collocation points‎, ‎we obtain the CAS wavelet coefficients that these coefficients are applied in approximating the unk...

متن کامل

Rational Gauss Quadrature

The existence of (standard) Gauss quadrature rules with respect to a nonnegative measure dμ with support on the real axis easily can be shown with the aid of orthogonal polynomials with respect to this measure. Efficient algorithms for computing the nodes and weights of an n-point Gauss rule use the n × n symmetric tridiagonal matrix determined by the recursion coefficients for the first n orth...

متن کامل

A fast algorithm for Gaussian type quadrature formulae with mixed boundary conditions and some lumped mass spectral approximations

After studying Gaussian type quadrature formulae with mixed boundary conditions, we suggest a fast algorithm for computing their nodes and weights. It is shown that the latter are computed in the same manner as in the theory of the classical Gauss quadrature formulae. In fact, all nodes and weights are again computed as eigenvalues and eigenvectors of a real symmetric tridiagonal matrix. Hence,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014