Non-canonic observers for canonic models of neural oscillators

نویسندگان

  • D. Fairhurst
  • Cees van Leeuwen
چکیده

We consider the problem of state and parameter estimation for a class of nonlinear oscillators defined as a system of coupled nonlinear ordinary differential equations. Observable variables are limited to a few components of state vector and an input signal. This class of systems describes a set of canonic models governing the dynamics of evoked potential in neural membranes, including Hodgkin-Huxley, Hindmarsh-Rose, FitzHugh-Nagumo, and Morris-Lecar models. We consider the problem of state and parameter reconstruction for these models within the classical framework of observer design. This framework offers computationallyefficient solutions to the problem of state and parameter reconstruction of a system of nonlinear differential equations, provided that these equations are in the so-called adaptive observer canonic form. We show that despite typical neural oscillators being locally observable they are not in the adaptive canonic observer form. Furthermore, we show that no parameter-independent diffeomorphism exists such that the original equations of these models can be transformed into the adaptive canonic observer form. We demonstrate, however, that for the class of Hindmarsh-Rose and FitzHugh-Nagumo models, parameter-dependent coordinate transformations can be used to render these systems into the adaptive observer canonical form. This allows reconstruction, at least partially and up to a (bi)linear transformation, of unknown state and parameter values with exponential rate of convergence. In order to avoid the problem of only partial reconstruction and at the same time to be able to deal with more general nonlinear models in which the unknown parameters enter the system nonlinearly, we present a new method for state and parameter reconstruction for these systems. The method combines advantages of standard Lyapunov-based design with more flexible design and analysis techniques based on the notions of positive invariance and small-gain theorems. We show that this flexibility allows to overcome ill-conditioning and non-uniqueness issues arising in this problem. Effectiveness of our method is illustrated with simple numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observers for Canonic Models of Neural Oscillators

We consider the problem of state and parameter estimation for a class of nonlinear oscillators defined as a system of coupled nonlinear ordinary differential equations. Observable variables are limited to a few components of state vector and an input signal. This class of systems describes a set of canonic models governing the dynamics of evoked potential in neural membranes, including Hodgkin-...

متن کامل

State and Parameter Estimation for Canonic Models of Neural oscillators

We consider the problem of how to recover the state and parameter values of typical model neurons, such as Hindmarsh-Rose, FitzHugh-Nagumo, Morris-Lecar, from in-vitro measurements of membrane potentials. In control theory, in terms of observer design, model neurons qualify as locally observable. However, unlike most models traditionally addressed in control theory, no parameter-independent dif...

متن کامل

Novel Canonic Current Mode DDCC Based SRCO Synthesized Using a Genetic Algorithm

A survey of the technical literature reveals that synthesis of Current Mode (CM) oscillators using single active building block (ABB) requires an additional identical or complementary current terminal to sense and take out the current output. The topologies of these oscillators are essentially based on the current mode approach. They use a Voltage Controlled Voltage Source (VCVS) and two curren...

متن کامل

Canonic FFT flow graphs for real-valued even/odd symmetric inputs

Canonic real-valued fast Fourier transform (RFFT) has been proposed to reduce the arithmetic complexity by eliminating redundancies. In a canonic N-point RFFT, the number of signal values at each stage is canonic with respect to the number of signal values, i.e., N. The major advantage of the canonic RFFTs is that these require the least number of butterfly operations and only real datapaths wh...

متن کامل

Instructions for use Title An Algorithm for Bit-Serial Addition of SPT Numbers for Multiplierless Realization of Adaptive Equalizers

The “sum of power of two (SPT)” is an effective format to represent multipliers in a digital filter which reduces the complexity of multiplication to a few shift and add operations. The canonic SPT is a special sparse SPT representation that guarantees occurrence of at least one zero between every two nonzero SPT bits. This paper presents a novel algorithm for bit serial addition of two numbers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009