Two-phase electrochemical lithiation in amorphous silicon.

نویسندگان

  • Jiang Wei Wang
  • Yu He
  • Feifei Fan
  • Xiao Hua Liu
  • Shuman Xia
  • Yang Liu
  • C Thomas Harris
  • Hong Li
  • Jian Yu Huang
  • Scott X Mao
  • Ting Zhu
چکیده

Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms.

Lithium ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation, because of the extremely large gravimetric and volumetric capacities of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link the structure in these systems w...

متن کامل

Robustness of amorphous silicon during the initial lithiation/delithiation cycle

Recent research on the electrochemical lithiation of amorphous silicon nanoparticles shows that amorphous silicon is more fracture resistant than crystalline silicon during lithiation. Nanoparticles of amorphous silicon can be lithiated and delithiated without any fracture at all. To fully exploit the potential of using amorphous silicon as electrodes for lithium ion batteries it is important t...

متن کامل

The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation

icle as: M.T. McDow hiation/delithiatio Abstract Applying surface coatings to alloying anodes for Li-ion batteries can improve rate capability and cycle life, but it is unclear how this second phase affects mechanical deformation during electrochemical reaction. Here, in-situ transmission electron microscopy is employed to investigate the electrochemical lithiation and delithiation of silicon n...

متن کامل

Type I Clathrates as Novel Silicon Anodes: An Electrochemical and Structural Investigation

Silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. An electrochemical evaluation of type I silicon clathrates based on Ba8Al y Si46-y as the anode material for lithium-ion batteries is presented here. Postcycling characterization with nuclear magnetic resonance and X-ray diffraction shows no discernible structural or volume changes even after ...

متن کامل

Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars

Silicon is one of the most promising anode materials for use in rechargeable lithium-ion batteries due to its high theoretical specific capacity of 4200 mAhg 1 and low cost. However, this high lithium storage capacity results in enormous volume expansion and contraction during electrochemical lithiation and delithiation, which can induce mechanical fracture and severe capacity fading. Recently,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2013