Towards Robot Task Planning From Probabilistic Models of Human Skills

نویسندگان

  • Chris Paxton
  • Marin Kobilarov
  • Gregory D. Hager
چکیده

We describe an algorithm for motion planning based on expert demonstrations of a skill. In order to teach robots to perform complex object manipulation tasks that can generalize robustly to new environments, we must (1) learn a representation of the effects of a task and (2) find an optimal trajectory that will reproduce these effects in a new environment. We represent robot skills in terms of a probability distribution over features learned from multiple expert demonstrations. When utilizing a skill in a new environment, we compute feature expectations over trajectory samples in order to stochastically optimize the likelihood of a trajectory in the new environment. The purpose of this method is to enable execution of complex tasks based on a library of probabilistic skill models. Motions can be combined to accomplish complex tasks in hybrid domains. Our approach is validated in a variety of case studies, including an Android game, simulated assembly task, and real robot experiment with a UR5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soccer Goalkeeper Task Modeling and Analysis by Petri Nets

In a robotic soccer team, goalkeeper is an important challenging role, which has different characteristics from the other teammates. This paper proposes a new learning-based behavior model for a soccer goalkeeper robot by using Petri nets. The model focuses on modeling and analyzing, both qualitatively and quantitatively, for the goalkeeper role so that we have a model-based knowledge of the ta...

متن کامل

Social Hierarchical Learning

The cages and physical barriers that once isolated robots from contact with humans are being replaced with sensing technology and algorithms. As such, collaborative robotics is a fast-growing field of research spanning many important real-world robotics and artificial intelligence challenges. These include learning motor skills from demonstration, learning hierarchical task models, multi-agent ...

متن کامل

Visuospatial Skill Learning for Robots

A novel skill learning approach is proposed that allows a robot to acquire human-like visuospatial skills for object manipulation tasks. Visuospatial skills are attained by observing spatial relationships among objects through demonstrations. The proposed Visuospatial Skill Learning (VSL) is a goal-based approach that focuses on achieving a desired goal configuration of objects relative to one ...

متن کامل

Optimal Trajectory Planning of a Box Transporter Mobile Robot

This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...

متن کامل

Toward Probabilistic Safety Bounds for Robot Learning from Demonstration

Learning from demonstration is a popular method for teaching robots new skills. However, little work has looked at how to measure safety in the context of learning from demonstrations. We discuss three different types of safety problems that are important for robot learning from human demonstrations: (1) using demonstrations to evaluate the safety of a robot’s current policy, (2) using demonstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1602.04754  شماره 

صفحات  -

تاریخ انتشار 2015