Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes.

نویسندگان

  • Karen C Briley-Saebo
  • Peter X Shaw
  • Willem J M Mulder
  • Seung-Hyuk Choi
  • Esad Vucic
  • Juan Gilberto S Aguinaldo
  • Joseph L Witztum
  • Valentin Fuster
  • Sotirios Tsimikas
  • Zahi A Fayad
چکیده

BACKGROUND Oxidized low-density lipoprotein plays a key role in the initiation, progression, and destabilization of atherosclerotic plaques and is present in macrophages and the lipid pool. The aim of this study was to assess the feasibility of magnetic resonance imaging of atherosclerotic lesions in mice using micelles containing gadolinium and murine (MDA2 and E06) or human (IK17) antibodies that bind unique oxidation-specific epitopes. METHODS AND RESULTS MDA2 micelles, E06 micelles, IK17 micelles, nonspecific IgG micelles, and untargeted micelles (no antibody) were prepared and characterized with respect to pharmacokinetics and biodistribution in wild-type and atherosclerotic apolipoprotein E-deficient (apoE(-/-)) mice. Magnetic resonance imaging was performed at 9.4 T over a 96-hour time interval after the administration of 0.075-mmol Gd/kg micelles. MDA2, E06, and IK17 micelles exhibited a longer plasma half-life than IgG or untargeted micelles in apoE(-/-) but not wild-type mice. In apoE(-/-) mice, MDA2 and IK17 micelles showed maximal arterial wall uptake at 72 hours and E06 micelles at 96 hours, manifested by 125% to 231% enhancement in magnetic resonance signal compared with adjacent muscle. Confocal microscopy revealed that MDA2, IK17, and E06 micelles accumulated within atherosclerotic lesions and specifically within macrophages. Intravenous injection of free MDA2 before imaging with MDA2 micelles resulted in significantly diminished magnetic resonance signal enhancement. IgG micelles and untargeted micelles showed minimal enhancement in apoE(-/-) mice. There was no significant signal enhancement with all micelles in wild-type mice. CONCLUSIONS Magnetic resonance imaging with micelles containing gadolinium and oxidation-specific antibodies demonstrates specific targeting and excellent image quality of oxidation-rich atherosclerotic lesions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes.

OBJECTIVES The aim of this study was to determine whether iron oxide particles targeted to oxidation-specific epitopes image atherosclerotic lesions. BACKGROUND Oxidized low-density lipoprotein plays a major role in atherosclerotic plaque progression and destabilization. Prior studies indicate that gadolinium micelles labeled with oxidation-specific antibodies allow for in vivo detection of v...

متن کامل

I-55: Molecular Imaging Overview

Molecular imaging is the noninvasive visualization of normal as well as abnormal cellular processes at a molecular or genetic level of function. It is used to provide characterization and measurement of biological processes in living animals and humans (in vivo). The discipline of molecular imaging evolved rapidly over the past decade through the integration of cell biology, molecular biology a...

متن کامل

Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance.

BACKGROUND The oxidized low-density lipoprotein receptor (LDLR) LOX-1 plays a crucial role in atherosclerosis. We sought to detect and assess atherosclerotic plaque in vivo by using single-photon emission computed tomography/computed tomography and magnetic resonance imaging and a molecular probe targeted at LOX-1. METHODS AND RESULTS Apolipoprotein E(-/-) mice fed a Western diet and LDLR(-/-...

متن کامل

A New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).

Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity.   Materials ...

متن کامل

Imaging of Oxidation-Specific Epitopes in Atherosclerosis and Macrophage-Rich Vulnerable Plaques

Oxidative stress, and in particular oxidation of lipoproteins, is a hallmark of atherosclerosis. Upon entry of lipoproteins into the vessel wall, a cascade of pro-atherogenic pathways is initiated whereby the reaction of reactive oxygen species with substrates amenable to oxidation, such as polyunsaturated fatty acids, generates a variety of oxidation-specific epitopes on lipoproteins, proteins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 117 25  شماره 

صفحات  -

تاریخ انتشار 2008