In-plane electronic anisotropy of underdoped `122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals
نویسندگان
چکیده
The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Néel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the ‘122’ family of compounds. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
In-plane resistivity anisotropy in an underdoped iron arsenide superconductor.
High-temperature superconductivity often emerges in the proximity of a symmetry-breaking ground state. For superconducting iron arsenides, in addition to the antiferromagnetic ground state, a small structural distortion breaks the crystal's C(4 )rotational symmetry in the underdoped part of the phase diagram. We reveal that the representative iron arsenide Ba(Fe(1)(-x)Co(x))(2)As(2) develops a ...
متن کاملQuasiparticle dynamics and in-plane anisotropy in YBa2Cu3Oy near the onset of superconductivity
We report on an infrared study of carrier dynamics within the CuO2 planes in heavily underdoped detwinned single crystals of YBa2Cu3Oy. In an effort to reveal the electronic structure near the onset of superconductivity, we investigate the strong anisotropy of the electromagnetic response due to an enhancement of the scattering rate along the a axis. We propose that the origin of this anisotrop...
متن کاملAnisotropy of the in-plane resistivity of underdoped Ba(Fe(1-x)Co(x))2As2 superconductors induced by impurity scattering in the antiferromagnetic orthorhombic phase.
We investigated the in-plane resistivity anisotropy for underdoped Ba(Fe(1-x)Co(x))(2)As(2) single crystals with improved quality. We demonstrate that the anisotropy in resistivity in the magnetostructural ordered phase arises from the anisotropy in the residual component which increases in proportion to the Co concentration x. This gives evidence that the anisotropy originates from the impurit...
متن کاملAnisotropy of electrical transport in pnictide superconductors studied using Monte Carlo simulations of the spin-fermion model.
An undoped three-orbital spin-fermion model for the Fe-based superconductors is studied via Monte Carlo techniques in two-dimensional clusters. At low temperatures, the magnetic and one-particle spectral properties are in agreement with neutron and photoemission experiments. Our main results are the resistance versus temperature curves that display the same features observed in BaFe(2)As(2) det...
متن کاملابررساناهای دمای بالا- با دید نوترونها
Neutron scattering is proved to be a vital probe in unveiling the magnetic properties of high temperature superconductors (HTSC). Detailed information about the energy and momentum dependence of the magnetic dynamics of HTSC have been obtained directly by this technique. Over the past decade by improving the crystal growth methods, large and high quality single crystals of HTSC, which are ess...
متن کامل