(De)Localization in the Prime Schrödinger Operator

نویسندگان

  • César R. de Oliveira
  • Giancarlo Q. Pellegrino
چکیده

It is reported a combined numerical approach to study the localization properties of the one-dimensional tight-binding model with potential modulated along the prime numbers. A localization-delocalization transition was found as function of the potential intensity; it is also argued that there are delocalized states for any value of the potential intensity. PACS numbers: 03.65.-w, 72.20.Ee, 72.10.Bg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization at prime ideals in bounded rings

In this paper we investigate the sufficiency criteria which guarantee the classical localization of a bounded ring at its prime ideals.

متن کامل

Ozaki's conditions for general integral operator

Assume that $mathbb{D}$ is the open unit disk. Applying Ozaki's conditions, we consider two classes of locally univalent, which denote by $mathcal{G}(alpha)$ and $mathcal{F}(mu)$ as follows begin{equation*}  mathcal{G}(alpha):=left{fin mathcal{A}:mathfrak{Re}left( 1+frac{zf^{prime prime }(z)}{f^{prime }(z)}right) <1+frac{alpha }{2},quad 0<alphaleq1right}, end{equation*} and begin{equation*}  ma...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

Absence of Cantor Spectrum for a Class of Schrödinger Operators

It is shown that the complete localization of eigenvectors for the almost Mathieu operator entails the absence of Cantor spectrum for this operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001