Acoustic-Linguistic Recognition of Interest in Speech with Bottleneck-BLSTM Nets
نویسندگان
چکیده
This paper proposes a novel technique for speech-based interest recognition in natural conversations. We introduce a fully automatic system that exploits the principle of bidirectional Long Short-Term Memory (BLSTM) as well as the structure of socalled bottleneck networks. BLSTM nets are able to model a self-learned amount of context information, which was shown to be beneficial for affect recognition applications, while bottleneck networks allow for efficient feature compression within neural networks. In addition to acoustic features, our technique considers linguistic information obtained from a multi-stream BLSTM-HMM speech recognizer. Evaluations on the TUM AVIC corpus reveal that the bottleneck-BLSTM method prevails over all approaches that have been proposed for the Interspeech 2010 Paralinguistic Challenge task.
منابع مشابه
An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملImproving English Conversational Telephone Speech Recognition
The goal of this work is to build a state-of-the-art English conversational telephone speech recognition system. We investigated several techniques to improve acoustic modeling, namely speaker-dependent bottleneck features, deep Bidirectional Long Short-Term Memory (BLSTM) recurrent neural networks, data augmentation and score fusion of DNN and BLSTM models. Training set consisted of the 300 ho...
متن کامل2016 BUT Babel System: Multilingual BLSTM Acoustic Model with i-Vector Based Adaptation
The paper provides an analysis of BUT automatic speech recognition systems (ASR) built for the 2016 IARPA Babel evaluation. The IARPA Babel program concentrates on building ASR system for many low resource languages, where only a limited amount of transcribed speech is available for each language. In such scenario, we found essential to train the ASR systems in a multilingual fashion. In this w...
متن کاملImproved Single System Conversational Telephone Speech Recognition with VGG Bottleneck Features
On small datasets, discriminatively trained bottleneck features from deep networks commonly outperform more traditional spectral or cepstral features. While these features are typically trained with small, fully-connected networks, recent studies have used more sophisticated networks with great success. We use the recent deep CNN (VGG) network for bottleneck feature extraction—previously used o...
متن کاملAllophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کامل