Polyaspartamide Vesicle induced by Metallic Nanoparticles.

نویسندگان

  • Jae Hyun Jeong
  • Chaenyung Cha
  • Amy Kaczmarowski
  • John Haan
  • Soonnam Oh
  • Hyunjoon Kong
چکیده

Polymer vesicles are being extensively studied to emulate self-assembly in biological systems and also use them in a variety of biological and industrial applications. This study demonstrates a novel strategy to prepare polymer vesicles in a pure aqueous medium by driving the micelle-to-vesicle transition with metallic nanoparticles. We synthesized poly(2-amino-2-hydroxyethyl aspartamide) (PAHA) substituted with octadecyl chains, which could form micelle-like self-aggregates in the aqueous medium and chemically bind with platinum precursors. Then, in situ polymerization of Pt nanoparticles within the PAHA self-aggregates generated polymer vesicles that possess nanoparticles within bilayers, because of the increase of the hydrophilic mass ratio to total mass of PAHA, f (w). This new strategy to prepare polymer vesicles would greatly serve to facilitate the control of self-assembly and ultimately improve the functionality of a wide array of polymer vesicles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ellipsoidal Polyaspartamide Polymersomes with Enhanced Cell-Targeting Ability.

Nano-sized polymersomes functionalized with peptides or proteins are being increasingly studied for targeted delivery of diagnostic and therapeutic molecules. Earlier computational studies have suggested that ellipsoidal nanoparticles, compared to spherical ones, display enhanced binding efficiency with target cells, but this has not yet been experimentally validated. We hypothesize that hydrop...

متن کامل

Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release.

Irradiated metallic nanoparticles hold great promise as heat transducers in photothermal applications such as drug delivery assays or photothermal therapy. We quantify the temperature increase of individual gold nanoparticles trapped in three dimensions near lipid vesicles exhibiting temperature sensitive permeability. The surface temperature can increase by hundreds of degrees Celsius even at ...

متن کامل

Numerical study of thermal dynamics of gold nanoparticles in laser-induced hyperthermia therapy

Damage of the normal tissue is a serious concenrn in cancer treatment. Hyperthermia by laserhas been considered as a safe cancer treatments methods with lower harmful effects on normaltissues. Using nanoparticles in cancer treatment has improved laser therapy, which is based ona selective cell targeting method to localize cell damages. Metallic nanoparticles such as gold,silver, and copper have...

متن کامل

Photothermal heating of optically trapped gold nanoparticles quantified using controlled vesicle cargo release

Optically trapped metallic nanoparticles hold great promise as heat transducers in photothermal applications such as drug delivery assays or photothermal therapy. We use the heat dissipated from an optically trapped gold nanosphere to perform a controlled release of a fluorescently labeled vesicle lumen. In the assay, the ambient temperature is kept below the phase transition temperature of the...

متن کامل

A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 2012 8  شماره 

صفحات  -

تاریخ انتشار 2012