Inhibition of Connexin 26/43 and Extracellular-Regulated Kinase Protein Plays a Critical Role in Melatonin Facilitated Gap Junctional Intercellular Communication in Hydrogen Peroxide-Treated HaCaT Keratinocyte Cells
نویسندگان
چکیده
Though melatonin was known to regulate gap junctional intercellular communication (GJIC) in chick astrocytes and mouse hepatocytes, the underlying mechanism by melatonin was not elucidated in hydrogen peroxide- (H(2)O(2)-) treated HaCaT keratinocyte cells until now. In the current study, though melatonin at 2 mM and hydrogen peroxide (H(2)O(2)) at 300 μM showed weak cytotoxicity in HaCaT keratinocyte cells, melatonin significantly suppressed the formation of reactive oxygen species (ROS) in H(2)O(2)-treated HaCaT cells compared to untreated controls. Also, the scrape-loading dye-transfer assay revealed that melatonin enhances the intercellular communication by introducing Lucifer Yellow into H(2)O(2)-treated cells. Furthermore, melatonin significantly enhanced the expression of connexin 26 (Cx26) and connexin 43 (Cx43) at mRNA and protein levels, but not that of connexin 30 (Cx30) in H(2)O(2)-treated HaCaT cells. Of note, melatonin attenuated the phosphorylation of extracellular signal-regulated protein kinases (ERKs) more than p38 MAPK or JNK in H(2)O(2)-treated HaCaT cells. Conversely, ERK inhibitor PD98059 promoted the intercellular communication in H(2)O(2)-treated HaCaT cells. Furthermore, combined treatment of melatonin (200 μM) and vitamin C (10 μg/mL) significantly reduced ROS production in H(2)O(2)-treated HaCaT cells. Overall, these findings support the scientific evidences that melatonin facilitates gap junctional intercellular communication in H(2)O(2)-treated HaCaT keratinocyte cells via inhibition of connexin 26/43 and ERK as a potent chemopreventive agent.
منابع مشابه
The roles of ERK1/2 and p38 MAP kinases in the preventive mechanisms of mushroom Phellinus linteus against the inhibition of gap junctional intercellular communication by hydrogen peroxide.
Modulation of gap junctional intercellular communication (GJIC) is a known cellular event associated with tumor promotion. The present study was undertaken to test the potential preventive effect of mushroom Phellinus linteus extract (PL) on the inhibition of GJIC, induced by hydrogen peroxide (H(2)O(2)), in WB-F344 rat liver epithelial cells (WB cells). Cells were pre-incubated with PL (5 and ...
متن کاملHydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells.
Cell to cell communication via gap junctions is essential in the maintenance of the homeostatic balance of multicellular organisms. Aberrant intercellular gap junctional communication (GJIC) has been implicated in tumor promotion, neuropathy and teratogenesis. Oxidative stress has also been implicated in similar pathologies such as cancer. We report a potential link between oxidative stress and...
متن کاملEnhanced Osteoclastic Resorption and Responsiveness to Mechanical Load in Gap Junction Deficient Bone
Emerging evidence suggests that connexin mediated gap junctional intercellular communication contributes to many aspects of bone biology including bone development, maintenance of bone homeostasis and responsiveness of bone cells to diverse extracellular signals. Deletion of connexin 43, the predominant gap junction protein in bone, is embryonic lethal making it challenging to examine the role ...
متن کاملFlow regulates intercellular communication in HAEC by assembling functional Cx40 and Cx37 gap junctional channels.
Direct cell-to-cell transfer of ions and small signaling molecules via gap junctions plays a key role in vessel wall homeostasis. Vascular endothelial gap junctional channels are formed by the connexin (Cx) proteins Cx37, Cx40, and Cx43. The mechanisms regulating connexin expression and assembly into functional channels have not been fully identified. We investigated the dynamic regulation of e...
متن کاملTargeted epidermal expression of mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders.
To investigate the role of connexins in dominantly inherited skin disease, transgenic mice were produced which expressed mutant connexin 26 [gjb2/connexin 26(D66H)], from a keratin 10 promoter, exclusively in the suprabasal epidermis (the cells in which Connexin 26 is up-regulated in epidermal hyperproliferative states). From soon after birth, the mice exhibited a keratoderma similar to that in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012