Reduced activity of SKCa and Na-K ATPase underlies the accelerated impairment of EDH-type relaxations in mesenteric arteries of aging spontaneously hypertensive rats
نویسندگان
چکیده
Aging is accompanied by endothelial dysfunction due to reduced bioavailability of nitric oxide (NO) and/or reduced endothelium-dependent hyperpolarizations (EDH). This study examines the hypothesis that hypertension aggravates the impairment of EDH-type relaxation due to aging. EDH-type relaxations were studied in superior mesenteric arteries isolated from Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats of 12, 36, 60, and 72 weeks of age. EDH-type relaxations in WKY were reduced with aging, and this was associated with an impairment of the function of small-conductance calcium-activated potassium channels (SKC a) and sodium-potassium ATPase (Na-K ATPase). EDH-type relaxation in SHR was smaller than that in WKY arteries, and further reduction occurred with aging. Pharmacological experiments suggested a reduced involvement of SKC a and Na-K ATPase and activation of adenosine monophosphate-activated protein kinase and silent information regulator T1 (sirtuin-1; SIRT1) in mesenteric arteries of 12-week-old SHR. These pharmacological findings suggest that in superior mesenteric arteries of the rat, the reduction in EDH-type relaxation occurs with aging and that such a reduction is exacerbated in hypertension. The latter exacerbation appears to involve proteins associated with the process of cellular senescence and is related to impaired function of SKC a and Na-K ATPase, a phenomenon that is also observed in mesenteric arteries of older normotensive rats.
منابع مشابه
Upregulation of heme oxygenase-1 potentiates EDH-type relaxations in the mesenteric artery of the spontaneously hypertensive rat.
Heme oxygenase (HO) converts heme to carbon monoxide, bilirubin, and free iron. The present study investigated whether or not HO-1 induction improves vascular relaxations attributable to endothelium-dependent hyperpolarization (EDH). Thirty-six-week-old spontaneously hypertensive rats were treated with the HO-1 inducer hemin, the HO inhibitor zinc protoporphyrin IX (II) (ZnPP), the antioxidant ...
متن کاملDownregulation of Endothelial Transient Receptor Potential Vanilloid Type 4 Channel and Small-Conductance of Ca2+-Activated K+ Channels Underpins Impaired Endothelium-Dependent Hyperpolarization in Hypertension.
Endothelium-dependent hyperpolarization (EDH)-mediated responses are impaired in hypertension, but the underlying mechanisms have not yet been determined. The activation of small- and intermediate-conductance of Ca2+-activated K+ channels (SKCa and IKCa) underpins EDH-mediated responses. It was recently reported that Ca2+ influx through endothelial transient receptor potential vanilloid type 4 ...
متن کاملGrape-Derived Polyphenols Prevent Doxorubicin-Induced Blunted EDH-Mediated Relaxations in the Rat Mesenteric Artery: Role of ROS and Angiotensin II
This study determined whether doxorubicin, an anticancer agent, impairs endothelium-dependent relaxations mediated by nitric oxide (NO) and endothelium-derived hyperpolarization (EDH) in the mesenteric artery and, if so, the mechanism underlying the protective effect of red wine polyphenols (RWPs), a rich natural source of antioxidants. Male Wistar rats were assigned into 4 groups: control, RWP...
متن کاملAngiotensin II Receptor–Neprilysin Inhibitor Sacubitril/Valsartan Improves Endothelial Dysfunction in Spontaneously Hypertensive Rats
BACKGROUND We have previously demonstrated that antihypertensive treatment with renin-angiotensin system inhibitors restores the impaired endothelium-dependent hyperpolarization (EDH)-mediated responses in spontaneously hypertensive rats (SHRs). Herein, we investigated whether the angiotensin II receptor-neprilysin inhibitor sacubitril/valsartan (LCZ696) would improve reduced EDH-mediated respo...
متن کاملExtracellular Calcium-Dependent Modulation of Endothelium Relaxation in Rat Mesenteric Small Artery: The Role of Potassium Signaling
The nature of NO- and COX-independent endothelial hyperpolarization (EDH) is not fully understood but activation of small- and intermittent-conductance Ca(2+)-activated K(+) channels (SKCa and IKCa) is important. Previous studies have suggested that the significance of IKCa depends on [Ca(2+)]out. Also it has been suggested that K(+) is important through localized [K(+)]out signaling causing ac...
متن کامل