Sparse Regression Algorithm for Activity Estimation in γ Spectrometry

نویسندگان

  • Yann Sepulcre
  • Thomas Trigano
  • Yaacov Ritov
چکیده

We consider the counting rate estimation of an unknown radioactive source, which emits photons at times modeled by an homogeneous Poisson process. A spectrometer converts the energy of incoming photons into electrical pulses, whose number provides a rough estimate of the intensity of the Poisson process. When the activity of the source is high, a physical phenomenon known as pileup effect distorts direct measurements, resulting in a significant bias to the standard estimators of the source activities used so far in the field. We show in this paper that the problem of counting rate estimation can be interpreted as a sparse regression problem. We suggest a post-processed, nonnegative, version of the Least Absolute Shrinkage and Selection Operator (LASSO) to estimate the photon arrival times. The main difficulty in this problem is that no theoretical conditions can guarantee consistency in sparsity of LASSO, because the dictionary is not ideal and the signal is sampled. We therefore derive theoretical conditions and bounds which illustrate that the proposed method can none the less provide a good, close to the best attainable, estimate of the counting rate activity. The good performances of the proposed approach are studied on simulations and real datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring γ–ray dose of terrestrial samples using β-γ Spectrometry

Background: The existence of some radionuclides in soil and some building materials produce a β-γ radiation field, which in some regions the exposure of these radionuclides to human is high. Materials and Methods: The air-absorbed dose, indoor and outdoor annual effective dose of soil and some building material samples (ceramic, granite, gypsum, etc.). The samples were collected from 3...

متن کامل

Robust and Sparse Regression via γ-Divergence

In high-dimensional data, many sparse regression methods have been proposed. However, they may not be robust against outliers. Recently, the use of density power weight has been studied for robust parameter estimation, and the corresponding divergences have been discussed. One such divergence is the γ-divergence, and the robust estimator using the γ-divergence is known for having a strong robus...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar

Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...

متن کامل

Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation

The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2013