A Sparse Approximate Inverse Preconditioner for Nonsymmetric Positive Definite Matrices

نویسندگان

  • DAVOD KHOJASTEH SALKUYEH
  • Davod Khojasteh Salkuyeh
چکیده

We develop an algorithm for computing a sparse approximate inverse for a nonsymmetric positive definite matrix based upon the FFAPINV algorithm. The sparse approximate inverse is computed in the factored form and used to work with some Krylov subspace methods. The preconditioner is breakdown free and, when used in conjunction with Krylovsubspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Some numerical experiments are given to show the efficiency of the preconditioner. AMS Mathematics Subject Classification : 65F10, 65F50.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A robust approximate inverse preconditioner based on the Sherman-Morrison formula∗

To solve a large, and sparse linear system Ax = b; (1) an approximate solution of (1) is usually obtained by using a preconditioned iterative Krylov subspace method [6]. In this work we focus on factorized approximate inverse preconditioners, in this class of preconditioners two matrices such that its product is an approximation of the inverse of A are computed and stored explicitely. Therefore...

متن کامل

A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems

Motivated by the paper [16], where the authors proposed a method to solve a symmetric positive definite (SPD) system Ax = b via a sparse-sparse iterative-based projection method, we extend this method to nonsymmetric linear systems and propose a modified method to construct a sparse approximate inverse preconditioner by using the Frobenius norm minimization technique in this paper. Numerical ex...

متن کامل

A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems

This paper is concerned with a new approach to preconditioning for large sparse linear systems A procedure for computing an incomplete factorization of the inverse of a nonsymmetric matrix is developed and the resulting factorized sparse approximate inverse is used as an explicit preconditioner for conjugate gradient type methods Some theoretical properties of the preconditioner are discussed a...

متن کامل

Block Approximate Inverse Preconditioners for Sparse Nonsymmetric Linear Systems

Abstract. In this paper block approximate inverse preconditioners to solve sparse nonsymmetric linear systems with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive updates of variable rank of an initial and nonsingular matrix A0 and the application of the Sherman-MorrisonWoodbury formula to compute an approximate inverse decomposition of...

متن کامل

Preconditioning Sparse Nonsymmetric Linear Systems with the Sherman-Morrison Formula

Let Ax = b be a large, sparse, nonsymmetric system of linear equations. A new sparse approximate inverse preconditioning technique for such a class of systems is proposed. We show how the matrix A−1 0 −A−1, where A0 is a nonsingular matrix whose inverse is known or easy to compute, can be factorized in the form UΩV T using the Sherman–Morrison formula. When this factorization process is done in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010