Molecular dynamics simulations of coherent optical photon emission from shock waves in crystals

نویسندگان

  • Evan J. Reed
  • Marin Soljačić
  • Richard Gee
  • J. D. Joannopoulos
چکیده

We have previously predicted that coherent electromagnetic radiation in the 1–100 THz frequency range can be generated in crystalline polarizable materials when subject to a shock wave or solitonlike propagating excitation E. J. Reed et al., Phys. Rev. Lett. 96, 013904 2006 . In this work, we present analysis and molecular dynamics simulations of shock waves in crystalline NaCl which expand upon this prediction. We demonstrate that the coherent polarization currents responsible for the effect are generated by a nonresonant, nonlinear effect that occurs at the shock front. We consider the effect of thermal noise and various shock pressures on the coherent polarization currents and find that the amplitude generally increases with increasing shock pressure and decreasing material temperature. Finally, we present calculations of the amplitude and distribution of emitted radiation showing that the radiation can be directed or undirected under various realistic conditions of the shape of the shock front.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maxwell equation simulations of coherent optical photon emission from shock waves in crystals.

We have predicted that weak coherent radiation in the 1-100 THz frequency regime can be emitted under some circumstances when a shock wave propagates through a polarizable crystal, like NaCl [Reed, Phys. Rev. Lett. 96, 013904 (2006)]. In this work, we present and analyze a new model of a shocked polarizable crystal that is amenable to systematic analytical study and direct numerical solution of...

متن کامل

Large-scale molecular dynamics simulations of shock induced plasticity in tantalum single crystals

We report on large-scale non-equilibrium molecular dynamics (NEMD) simulations of shock wave compression in Ta single crystals. The atomic interactions are modeled via a recently developed and optimized embedded-atom method (EAM) potential for Ta, which reproduces the equation of state up to 200 GPa. We examined the elastic-plastic transition and shock wave structure for wave propagation along ...

متن کامل

Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model

Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...

متن کامل

Modulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers

Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...

متن کامل

Large-scale Molecular Dynamics Simulations of Shock Waves in Laves Crystals and Icosahedral Quasicrystals

Quasicrystals and ordinary crystals both possess long-range translational order. But quasicrystals are aperiodic since their symmetry is non-crystallographic. The aim of this project is to study the behavior of shock waves in periodic and aperiodic structures and to compare the results. The expectation is that new types of defects are generated in the aperiodic materials. The materials studied ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007