Dynamic laser speckle imaging of cerebral blood flow.
نویسندگان
چکیده
Laser speckle imaging (LSI) based on the speckle contrast analysis is a simple and robust technique for imaging of heterogeneous dynamics. LSI finds frequent application for dynamical mapping of cerebral blood flow, as it features high spatial and temporal resolution. However, the quantitative interpretation of the acquired data is not straightforward for the common case of a speckle field formed by both by moving and localized scatterers such as blood cells and bone or tissue. Here we present a novel processing scheme, we call dynamic laser speckle imaging (dLSI), that can be used to correctly extract the temporal correlation parameters from the speckle contrast measured in the presence of a static or slow-evolving background. The static light contribution is derived from the measurements by cross-correlating sequential speckle images. In-vivo speckle imaging experiments performed in the rodent brain demonstrate that dLSI leads to improved results. The cerebral hemodynamic response observed through the thinned and intact skull are more pronounced in the dLSI images as compared to the standard speckle contrast analysis. The proposed method also yields benefits with respect to the quality of the speckle images by suppressing contributions of non-uniformly distributed specular reflections.
منابع مشابه
Simultaneous measurement of water flow velocity with fluorescent and speckle imaging technique
The average velocity of water flow has been simultaneously measured with fluorescent and speckle imaging methods. The measured velocities with two methods are in good agreement with each other and it confirms that the speckle imaging method can be used as a confident method to measure the velocity of water flow in a dry leaf. Also the velocity of water flow through thick and thin xylems of a le...
متن کاملDynamic imaging of cerebral blood flow using laser speckle.
A method for dynamic, high-resolution cerebral blood flow (CBF) imaging is presented in this article. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution are obtained. The regional CBF changes measured with the speckle technique are validated through direct comparison with con...
متن کاملSimultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging.
Automatic separation of arteries and veins in optical cerebral cortex images is important in clinical practice and preclinical study. In this paper, a simple but effective automatic artery-vein separation method which utilizes single-wavelength coherent illumination is presented. This method is based on the relative temporal minimum reflectance analysis of laser speckle images. The validation i...
متن کاملLow-cost laser speckle contrast imaging of blood flow using a webcam.
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that ...
متن کاملLaser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures.
Currently, there is no adequate technique for intraoperative monitoring of cerebral blood flow (CBF). To evaluate laser speckle imaging (LSI) for assessment of relative CBF, LSI was performed in 30 patients who underwent direct surgical revascularization for treatment of arteriosclerotic cerebrovascular disease (ACVD), Moyamoya disease (MMD), or giant aneurysms, and in 8 control patients who un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 17 16 شماره
صفحات -
تاریخ انتشار 2009