Energy spreading in strongly nonlinear disordered lattices
نویسنده
چکیده
We study the scaling properties of energy spreading in disordered strongly nonlinear Hamiltonian lattices. Such lattices consist of nonlinearly coupled local linear or nonlinear oscillators, and demonstrate a rather slow, subdiffusive spreading of initially localized wave packets. We use a fractional nonlinear diffusion equation as a heuristic model of this process, and confirm that the scaling predictions resulting from a self-similar solution of this equation are indeed applicable to all studied cases. We show that the spreading in nonlinearly coupled linear oscillators slows down compared to a pure power law, while for nonlinear local oscillators a power law is valid in the whole studied range of parameters. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. New Journal of Physics 15 (2013) 053015 1367-2630/13/053015+23$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
منابع مشابه
Scaling properties of energy spreading in nonlinear Hamiltonian two-dimensional lattices.
In nonlinear disordered Hamiltonian lattices, where there are no propagating phonons, the spreading of energy is of subdiffusive nature. Recently, the universality class of the subdiffusive spreading according to the nonlinear diffusion equation (NDE) has been suggested and checked for one-dimensional lattices. Here, we apply this approach to two-dimensional strongly nonlinear lattices and find...
متن کاملScaling of energy spreading in strongly nonlinear disordered lattices.
To characterize a destruction of Anderson localization by nonlinearity, we study the spreading behavior of initially localized states in disordered, strongly nonlinear lattices. Due to chaotic nonlinear interaction of localized linear or nonlinear modes, energy spreads nearly subdiffusively. Based on a phenomenological description by virtue of a nonlinear diffusion equation, we establish a one-...
متن کاملFirst and second sound in disordered strongly nonlinear lattices: numerical study
Abstract. We study numerically secondary modes on top of a chaotic state in disordered nonlinear lattices. Two basic models are considered, with or without a local on-site potential. By performing periodic spatial modulation of displacement and kinetic energy, and following the temporal evolution of the corresponding spatial profiles, we reveal different modes which can be interpreted as first ...
متن کاملSpreading in disordered lattices with different nonlinearities
We study the spreading of initially localized states in a nonlinear disordered lattice described by the nonlinear Schrödinger equation with random on-site potentials —a nonlinear generalization of the Anderson model of localization. We use a nonlinear diffusion equation to describe the subdiffusive spreading. To confirm the self-similar nature of the evolution we characterize the peak structure...
متن کاملRe-localization due to finite response times in a nonlinear Anderson chain
We study a disordered nonlinear Schrödinger equation with an additional relaxation process having a finite response time τ . Without the relaxation term, τ = 0, this model has been widely studied in the past and numerical simulations showed subdiffusive spreading of initially localized excitations. However, recently Caetano et al. [Eur. Phys. J. B 80, 321 (2011)] found that by introducing a res...
متن کامل