M ay 2 00 4 Stabilizing near - nonhyperbolic chaotic systems and its potential applications in neuroscience
نویسنده
چکیده
Based on the invariance principle of differential equations a simple, systematic, and rigorous feedback scheme with the variable feedback strength is proposed to stabilize nonlinearly any chaotic systems without any prior analytical knowledge of the systems. Especially the method may be used to control near-nonhyperbolic chaotic systems, which although arising naturally from models in astrophysics to those for neurobiology, all OGY-type methods will fail to stabilize. The technique is successfully used to the famous Hindmarsh-Rose model neuron and the Rössler hyperchaos system.
منابع مشابه
Stabilizing near-nonhyperbolic chaotic systems and its potential applications in neuroscience
Based on the invariance principle of differential equations a simple, systematic, and rigorous feedback scheme with the variable feedback strength is proposed to stabilize nonlinearly any chaotic systems without any prior analytical knowledge of the systems. Especially the method may be used to control near-nonhyperbolic chaotic systems, which although arising naturally from models in astrophys...
متن کاملFinite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملUnstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles.
Chaotic saddles are nonattracting dynamical invariant sets that physically lead to transient chaos. We examine the characterization of the natural measure by unstable periodic orbits for nonhyperbolic chaotic saddles in dissipative dynamical systems. In particular, we compare the natural measure obtained from a long trajectory on the chaotic saddle to that evaluated from unstable periodic orbit...
متن کاملCharacterization of the natural measure by unstable periodic orbits in nonhyperbolic chaotic systems
The natural measure of a chaotic set in a phase-space region can be related to the dynamical properties of all unstable periodic orbits embedded in part of the chaotic set contained in that region. This result has been rigorously shown to be valid for hyperbolic chaotic systems. Chaotic sets encountered in most physical situations, however, are typically nonhyperbolic. The purpose of this paper...
متن کاملUnexpected robustness against noise of a class of nonhyperbolic chaotic attractors.
Chaotic attractors arising in physical systems are often nonhyperbolic. We compare two sources of nonhyperbolicity: (1) tangencies between stable and unstable manifolds, and (2) unstable dimension variability. We study the effects of noise on chaotic attractors with these nonhyperbolic behaviors by investigating the scaling laws for the Hausdorff distance between the noisy and the deterministic...
متن کامل