Non-synaptic signaling from cerebellar climbing fibers modulates Golgi cell activity
نویسندگان
چکیده
Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we show that glutamate released from climbing fibers activates ionotropic and metabotropic receptors on Golgi cells through spillover-mediated transmission. The interplay of excitatory and inhibitory conductances provides flexible control over Golgi cell spiking, allowing either excitation or a biphasic sequence of excitation and inhibition following single climbing fiber stimulation. Together with prior studies of spillover transmission to molecular layer interneurons, these results reveal that climbing fibers exert control over inhibition at both the input and output layers of the cerebellar cortex.
منابع مشابه
Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex.
Precise representation of the timing of sensory stimuli is essential for rapid motor coordination, a core function of the cerebellum. Feedforward inhibition has been implicated in precise temporal signaling in several regions of the brain, but little is known about this type of inhibitory circuit within the input layer of the cerebellar cortex. We investigated the synaptic properties of feedfor...
متن کاملTime window control: a model for cerebellar function based on synchronization, reverberation, and time slicing.
We present a new hypothesis of cerebellar function that is based on synchronization, delayed reverberation, and time windows for triggering spikes. Our model suggests that granule cells admit mossy fiber activity to the parallel fibers only if the Golgi cells are firing synchronously and if the mossy-fiber spikes arrive within short and well-defined time windows. The concept of time window cont...
متن کاملClimbing Fiber Signaling and Cerebellar Gain Control
The physiology of climbing fiber signals in cerebellar Purkinje cells has been studied since the early days of electrophysiology. Both the climbing fiber-evoked complex spike and the role of climbing fiber activity in the induction of long-term depression (LTD) at parallel fiber-Purkinje cell synapses have become hallmark features of cerebellar physiology. However, the key role of climbing fibe...
متن کاملAnatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse
Climbing fibers (CFs) originating in the inferior olive (IO) constitute one of the main inputs to the cerebellum. In the mammalian cerebellar cortex each of them climbs into the dendritic tree of up to 10 Purkinje cells (PCs) where they make hundreds of synaptic contacts and elicit the so-called all-or-none complex spikes controlling the output. While it has been proven that CFs contact molecul...
متن کاملThe cerebellar network: from structure to function and dynamics.
Since the discoveries of Camillo Golgi and Ramón y Cajal, the precise cellular organization of the cerebellum has inspired major computational theories, which have then influenced the scientific thought not only on the cerebellar function but also on the brain as a whole. However, six major issues revealing a discrepancy between morphologically inspired hypothesis and function have emerged. (1)...
متن کامل