Concentration of Random Determinants and Permanent Estimators

نویسندگان

  • Kevin P. Costello
  • Van H. Vu
چکیده

We show that the absolute value of the determinant of a matrix with random independent (but not necessarily i.i.d.) entries is strongly concentrated around its mean. As an application, we show that Godsil–Gutman and Barvinok estimators for the permanent of a strictly positive matrix give subexponential approximation ratios with high probability. A positive answer to the main conjecture of the paper would lead to polynomial approximation ratios in the above problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concentration of permanent estimators for certain large matrices

Let An = (aij)i,j=1 be an n × n positive matrix with entries in [a, b], 0 < a ≤ b. Let Xn = ( √ aijxij)i,j=1 be a random matrix where {xij} are i.i.d. N(0, 1) random variables. We show that for large n, det(X nXn) concentrates sharply at the permanent of An, in the sense that n−1 log(det(X nXn)/per An)→n→∞ 0 in probability. Short title: Concentration for permanent estimators.

متن کامل

Singular values of Gaussian matrices and permanent estimators

We present estimates on the small singular values of a class of matrices with independent Gaussian entries and inhomogeneous variance profile, satisfying a broad-connectedness condition. Using these estimates and concentration of measure for the spectrum of Gaussian matrices with independent entries, we prove that for a large class of graphs satisfying an appropriate expansion property, the Bar...

متن کامل

ESTIMATORS BASED ON FUZZY RANDOM VARIABLES AND THEIR MATHEMATICAL PROPERTIES

In statistical inference, the point estimation problem is very crucial and has a wide range of applications. When, we deal with some concepts such as random variables, the parameters of interest and estimates may be reported/observed as imprecise. Therefore, the theory of fuzzy sets plays an important role in formulating such situations. In this paper, we rst recall the crisp uniformly minimum ...

متن کامل

Two-level proportional hazards models.

We extend the proportional hazards model to a two-level model with a random intercept term and random coefficients. The parameters in the multilevel model are estimated by a combination of EM and Newton-Raphson algorithms. Even for samples of 50 groups, this method produces estimators of the fixed effects coefficients that are approximately unbiased and normally distributed. Two different metho...

متن کامل

Empirical Bayes Estimators with Uncertainty Measures for NEF-QVF Populations

The paper proposes empirical Bayes (EB) estimators for simultaneous estimation of means in the natural exponential family (NEF) with quadratic variance functions (QVF) models. Morris (1982, 1983a) characterized the NEF-QVF distributions which include among others the binomial, Poisson and normal distributions. In addition to the EB estimators, we provide approximations to the MSE’s of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2009