Automorphism Invariance of P- and GUS-Properties of Linear Transformations on Euclidean Jordan Algebras

نویسندگان

  • M. Seetharama Gowda
  • Roman Sznajder
چکیده

Generalizing the P-property of a matrix, Gowda et al. [Gowda, M. S., R. Sznajder, J. Tao. 2004. Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393 203–232] recently introduced and studied Pand globally uniquely solvable (GUS)-properties for linear transformations defined on Euclidean Jordan algebras. In this paper, we study the invariance of these properties under automorphisms of the algebra and of the symmetric cone. By means of these automorphisms and the concept of a principal subtransformation, we introduce and study ultra and super P-(GUS)-properties for a linear transformation on a Euclidean Jordan algebra.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On p-semilinear transformations

In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...

متن کامل

On the P-property of Z and Lyapunov-like transformations on Euclidean Jordan algebras

The P, Z, and S properties of a linear transformation on a Euclidean Jordan algebra are generalizations of the corresponding properties of a square matrix on R. Motivated by the equivalence of P and S properties for a Z-matrix [2] and a similar result for Lyapunov and Stein transformations on the space of real symmetric matrices [6], [5], in this paper, we present two results supporting the con...

متن کامل

Complementarity properties of Peirce-diagonalizable linear transformations on Euclidean Jordan algebras

Complementarity properties of Peircediagonalizable linear transformations on Euclidean Jordan algebras M. Seetharama Gowda a , J. Tao b & Roman Sznajder c a Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD, 21250, USA b Department of Mathematics and Statistics, Loyola University Maryland, Baltimore, MD, 21210, USA c Department of Mathematics, Bowi...

متن کامل

Sparse Recovery on Euclidean Jordan Algebras

We consider the sparse recovery problem on Euclidean Jordan algebra (SREJA), which includes sparse signal recovery and low-rank symmetric matrix recovery as special cases. We introduce the restricted isometry property, null space property (NSP), and s-goodness for linear transformations in s-sparse element recovery on Euclidean Jordan algebra (SREJA), all of which provide sufficient conditions ...

متن کامل

Left Jordan derivations on Banach algebras

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2006