Strong anisotropic lifetime orientation distributions of a two-level quantum emitter around a plasmonic nanorod
نویسندگان
چکیده
Spontaneous emission lifetime orientation distributions of a two-level quantum emitter in metallic nanorod structures are theoretically investigated by the rigorous electromagnetic Green function method. It was found that spontaneous emission lifetime strongly depended on the transition dipole orientation and the position of the emitter. The anisotropic factor defined as the ratio between the maximum and minimum values of the lifetimes along different dipole orientations can reach up to 10(3). It is much larger than those in dielectric structures which are only several times usually. Our results show that the localized plasmonic resonance effect provides a new degree of freedom to effectively control spontaneous emission by the dipole orientation of the quantum emitters.
منابع مشابه
Metal nanoparticle plasmons operating within a quantum lifetime.
We investigate the dynamics of a plasmonic oscillation over a metal nanoparticle when it is strongly coupled to a quantum emitter (e.g. quantum dot, molecule). We simulate the density matrix evolution for a simple model, a coupled classical-quantum oscillators system. We show that the lifetime of the plasmonic oscillations can be increased several orders of magnitude, up to the decay time of th...
متن کاملDefocused differential interference contrast microscopy imaging of single plasmonic anisotropic nanoparticles.
We present the defocused differential interference contrast (DIC) imaging of gold nanorods. We found that the scattered light and the defocus aberration play an important role in the formation of orientation-dependent DIC image patterns of a gold nanorod. Interestingly, the scattered light from a gold nanorod aligned closer to the polarization directions enables us to directly resolve its spati...
متن کاملRadiative Enhancement of Plasmonic Nanopatch Antennas
Efficient light manipulation at subwavelength scale is of great interest for solar energy conversion, optical sensing, and nanophotonic devices. Recently, plasmonic nanopatch antennas (PNAs), which consist of plasmonic nanoparticles and metal films with thin layers of dielectric spacers sandwiched between them, have shown promise for directing and enhancing radiation from the dipole emitters at...
متن کاملCoupling of a dipolar emitter into one-dimensional surface plasmon
Quantum plasmonics relies on a new paradigm for light-matter interaction. It benefits from strong confinement of surface plasmon polaritons (SPP) that ensures efficient coupling at a deep subwavelength scale, instead of working with a long lifetime cavity polariton that increases the duration of interaction. The large bandwidth and the strong confinement of one dimensional SPP enable controlled...
متن کاملVacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit
The strong interaction of individual quantum emitters with resonant cavities is of fundamental interest for understanding light-matter interactions. Plasmonic cavities hold the promise of attaining the strong coupling regime even under ambient conditions and within subdiffraction volumes. Recent experiments revealed strong coupling between individual plasmonic structures and multiple organic mo...
متن کامل