Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans.
نویسندگان
چکیده
Archaea have a self-assembling proteinaceous surface (S-) layer as the primary and outermost boundary of their cell envelopes. The S-layer maintains structural rigidity, protects the organism from adverse environmental elements, and yet provides access to all essential nutrients. We have determined the crystal structure of one of the two "homologous" tandem polypeptide repeats that comprise the Methanosarcina acetivorans S-layer protein and propose a high-resolution model for a microbial S-layer. The molecular features of our hexameric S-layer model recapitulate those visualized by medium resolution electron microscopy studies of microbial S-layers and greatly expand our molecular view of S-layer dimensions, porosity, and symmetry. The S-layer model reveals a negatively charged molecular sieve that presents both a charge and size barrier to restrict access to the cell periplasmic-like space. The β-sandwich folds of the S-layer protein are structurally homologous to eukaryotic virus envelope proteins, suggesting that Archaea and viruses have arrived at a common solution for protective envelope structures. These results provide insight into the evolutionary origins of primitive cell envelope structures, of which the S-layer is considered to be among the most primitive: it also provides a platform for the development of self-assembling nanomaterials with diverse functional and structural properties.
منابع مشابه
Identification of the Major Expressed S-Layer and Cell Surface-Layer-Related Proteins in the Model Methanogenic Archaea: Methanosarcina barkeri Fusaro and Methanosarcina acetivorans C2A
Many archaeal cell envelopes contain a protein coat or sheath composed of one or more surface exposed proteins. These surface layer (S-layer) proteins contribute structural integrity and protect the lipid membrane from environmental challenges. To explore the species diversity of these layers in the Methanosarcinaceae, the major S-layer protein in Methanosarcina barkeri strain Fusaro was identi...
متن کاملGenome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A.
Methanosarcina acetivorans strain C2A is a marine methanogenic archaeon notable for its substrate utilization, genetic tractability, and novel energy conservation mechanisms. To help probe the phenotypic implications of this organism's unique metabolism, we have constructed and manually curated a genome-scale metabolic model of M. acetivorans, iMB745, which accounts for 745 of the 4,540 predict...
متن کاملIn vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1.
We present here a method for in vivo transposon mutagenesis of a methanogenic archaeon, Methanosarcina acetivorans C2A, which because of its independence from host-specific factors may have broad application among many microorganisms. Because there are no known Methanosarcina transposons we modified the mariner transposable element Himar1, originally found in the insect Hematobia irritans, to a...
متن کاملLight sensitivity of methanogenic archaebacteria.
Representatives of four families of methanogenic archaebacteria (archaea), Methanobacterium thermoautotrophicum delta H, Methanobacterium thermoautotrophicum Marburg, Methanosarcina acetivorans, Methanococcus voltae, and Methanomicrobium mobile, were found to be light sensitive. The facultative anaerobic eubacteria Escherichia coli and Salmonella typhimurium, however, were tolerant of light whe...
متن کاملMreA Functions in the Global Regulation of Methanogenic Pathways in Methanosarcina acetivorans
UNLABELLED Results are presented supporting a regulatory role for the product of the MA3302 gene locus (designated MreA) previously annotated as a hypothetical protein in the methanogenic species Methanosarcina acetivorans of the domain Archaea. Sequence analysis of MreA revealed identity to the TrmB family of transcription factors, albeit the sequence is lacking the sensor domain analogous to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 29 شماره
صفحات -
تاریخ انتشار 2012