Synergistic effect of graphene and polypyrrole to enhance the SnO2 anode performance in lithium-ion batteries

نویسندگان

  • Ruiqing Liu
  • Yuejiao Liu
  • Qi Kang
  • Anix Casimir
  • Hanguang Zhang
  • Ning Li
  • Zhendong Huang
  • Yi Li
  • Xiujing Lin
  • Xiaomiao Feng
  • Yanwen Ma
  • Gang Wu
چکیده

In this work, a synergistic effect of reduced graphene oxide (rGO) and polypyrrole (PPy) was studied in terms of their promotional role to enhance the capacity and cyclic stability of hollow SnO2 anodes in lithium-ion batteries. The core–shell structured hollow SnO2/rGO/PPy nanocomposites were synthesized using a hydrothermal method followed by an in situ chemical-polymerization route. Substantially improved cycling stability and rate capabilities are achieved on the SnO2/rGO/PPy ternary anodes. The exceptional cycling performance is due to the hollow ternary core–shell structure covered with PPy buffer layers along with the graphene frameworks further benefiting Li diffusivity and electrical conductivity. The significantly increased Li diffusion coefficient improves rate performance and the large current charge and discharge. Thus, taking all of these benefits together including the hollow structures of SnO2 particles, role of the buffer of PPy, and effective matrix of graphene, the ternary nanocomposites yield a robust architecture for anode materials in high-performance Li-ion batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Core–shell structured hollow SnO2–polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries

0.1016/j.nanoen.2 lsevier Ltd. All rig thors. : [email protected] Abstract Core–shell structured hollow SnO2–polypyrrole (PPy) nanocomposites (SnO2@PPy) with excellent electrochemical performance were synthesized using a hydrothermal method followed by an in situ chemical-polymerization route. The thickness of the polymerized amorphous PPy coating covering on the hollow SnO2 microspheres is abou...

متن کامل

Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries

In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized ...

متن کامل

SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries

Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries.

A SnO2/graphene nanocomposite was prepared via a facile solvothermal process using stannous octoate as a Sn source. The as-prepared SnO2/graphene nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, a long cycle life and a good rate capability when used as an anode material for lithium-ion batteries.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016