Conceptual Design of a Two Spool Compressor for the NASA Large Civil Tilt Rotor Engine

نویسنده

  • Joseph P. Veres
چکیده

This paper focuses on the conceptual design of a two spool compressor for the NASA Large Civil Tilt Rotor engine, which has a design-point pressure ratio goal of 30:1 and an inlet weight flow of 30.0 lbm/sec. The compressor notional design requirements of pressure ratio and low-pressure compressor (LPC) and high pressure ratio compressor (HPC) work split were based on a previous engine system study to meet the mission requirements of the NASA Subsonic Rotary Wing Projects Large Civil Tilt Rotor vehicle concept. Three mean line compressor design and flow analysis codes were utilized for the conceptual design of a two-spool compressor configuration. This study assesses the technical challenges of design for various compressor configuration options to meet the given engine cycle results. In the process of sizing, the technical challenges of the compressor became apparent as the aerodynamics were taken into consideration. Mechanical constraints were considered in the study such as maximum rotor tip speeds and conceptual sizing of rotor disks and shafts. The rotor clearance-to-span ratio in the last stage of the LPC is 1.5% and in the last stage of the HPC is 2.8%. Four different configurations to meet the HPC requirements were studied, ranging from a single stage centrifugal, two axi-centrifugals, and all axial stages. Challenges of the HPC design include the high temperature (1,560 °R) at the exit which could limit the maximum allowable peripheral tip speed for centrifugals, and is dependent on material selection. The mean line design also resulted in the definition of the flow path geometry of the axial and centrifugal compressor stages, rotor and stator vane angles, velocity components, and flow conditions at the leading and trailing edges of each blade row at the hub, mean and tip. A mean line compressor analysis code was used to estimate the compressor performance maps at off-design speeds and to determine the required variable geometry reset schedules of the inlet guide vane and variable stators that would result in the transonic stages being aerodynamically matched with high efficiency and acceptable stall margins based on user specified maximum levels of rotor diffusion factor and relative velocity ratio.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermoelastic Analysis of Compressor Spool in Turbojet Engine and Redesign it Using Functionally Graded Materials with Opti-mal Coefficients

In this article, an exact analysis of compressors spool in a turbojet engine has been investigated. The spool is modeled as a rotating thick-walled hollow circular cylinder with free-clamp ends. It is subjected to centrifugal load due to its constant rotational speed, uniform internal and external radial loads and arbitrary thermal gradients. The analysis is initially investigated for the homog...

متن کامل

Stall Vortex Shedding over a Compressor Cascade (RESEARCH NOTE)

The unstable flow with rotating-stall-like (RS) effects in a rotor-cascade of an axial compressor was numerically investigated. The RS was captured with the reduction in mass flow rate and increasing of exit static pressure with respect to design operating condition of the single rotor. The oscillatory velocity traces during the stall propagation showed that the RS vortices repeat periodically,...

متن کامل

Stall Vortex Shedding Over a Compressor Cascade (RESEARCH NOTE)

The unstable flow with rotating-stall-like (RS) effects in a rotor-cascade of an axialcompressor was numerically investigated. The RS was captured with the reduction in mass flow rateand increasing of exit static pressure with respect to design operating condition of the single rotor.The oscillatory velocity traces during the stall propagation showed that the RS vortices repeatperiodically, and...

متن کامل

Active Stability Control of the Compression System in a Twin-spool Turbofan Engine by Air Injection

This investigation presents an active stability control system on a twin-spool turbofan engine to recover from unstable operating conditions or to avoid them. Therefor air injection in the tip region ahead of the first low pressure compressor (LPC) rotor is used to damp any instabilities and their precursors. A high frequency instrumentation is applied to detect the flow disturbances and to fee...

متن کامل

Process Improvement of Experimental Measurements Using D-optimal Models

In this paper, the application of D-optimal models, as an alternative to response surface models (RS models) for design of experiment (DOE) was examined. Two D-optimal models for tilt-rotors in the wind tunnel experiment, as a form of quadratic functions, were generated based on a chosen optimality criterion. This optimality criterion was used to generate the optimized sampled points in the des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010