Microsatellite instability testing in colorectal carcinoma: choice of markers affects sensitivity of detection of mismatch repair-deficient tumors.
نویسندگان
چکیده
PURPOSE Microsatellite instability (MSI) is found in 10% to 15% of sporadic colorectal tumors and is usually caused by defects in DNA mismatch repair (MMR). In 1997, a panel of microsatellite markers including mononucleotide and dinucleotide repeats was recommended by a National Cancer Institute workshop on MSI. We investigated the relationship between instability of these markers and MMR protein expression in a cohort of sporadic colorectal cancer patients. EXPERIMENTAL DESIGN Paraffin sections of normal and tumor tissue from 262 colorectal cancer patients were examined for MSI status by PCR amplification and for MMR protein expression using antibodies against hMLH1, hPMS2, hMSH2, and hMSH6. RESULTS Twenty-six (10%) of the patients studied had tumors with a high level of MSI (MSI-H). The frequencies of MSI were the same in African-American and Caucasian patients. Each of the MSI-H tumors had mutations in both mononucleotide and dinucleotide repeats and had loss of MMR protein expression, as did two tumors that had low levels of MSI (MSI-L). These two MSI-L tumors exhibited mutations in mononucleotide repeats only, whereas eight of the other nine MSI-L tumors had mutations in just a single dinucleotide repeat. There was not a statistically significant difference in outcomes between patients whose tumors were MMR-positive or MMR-negative, although there was a slight trend toward improved survival among those with MMR-deficient tumors. CONCLUSIONS The choice of microsatellite markers is important for MSI testing. Examination of mononucleotide repeats is sufficient for detection of tumors with MMR defects, whereas instability only in dinucleotides is characteristic of MSI-L/MMR-positive tumors.
منابع مشابه
Molecular Analysis of Microsatellite Instability in Hereditary Non Polyposis Colon Carcinoma Patients from North-East Iran
Background and Objectives: Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant cancer predisposition syndrome caused by germ-line mutations in DNA mismatch repair genes. Tumors arising as a result of these mutations display instability in a sequence area known as microsatellites. Studies have shown that some Bethesda markers (BAT25, BAT26) are more efficient than other...
متن کاملDetection of Microsatellite Instability by High-Resolution Melting Analysis in Colorectal Cancer
Background: Colorectal cancer (CRC) is the third most common cancer worldwide. microsatellite instability (MSI) is a molecular marker of a deficient mismatch repair system and happens in almost 15% of CRCs. Because of a wide frequency of MSI+ CRC in Iran compared to other parts of the world, the importance of screening for this type of cancer is highlighted. Methods: The most common MSI detecti...
متن کاملFrequent microsatellite instability in sporadic tumors of the upper urinary tract.
Urothelial carcinoma of the renal pelvis and ureter may develop sporadically or as a manifestation of hereditary nonpolyposis colorectal cancer. The majority of hereditary nonpolyposis colorectal cancer is caused by mutation of the human DNA mismatch repair (MMR) genes and is detected by associated microsatellite instability (MSI). Seventy-three unselected urothelial carcinomas of the ureter an...
متن کاملسه موتاسیون ژرم لاین جدید در ژن MLH1 در بیماران مبتلا به سرطان کولورکتال ارثی
Abstract Background: Hereditary non-polyposis colorectal cancer is the most common cause of early onset of hereditary colorectal cancer. In the majority of Hereditary non-polyposis colorectal cancer families, microsatellite instability and germline mutation in one of the DNA mismatch repair genes in clouding MSH2, MLH1, MSH6 and PMS2 are found. The Objective of this study was to determine th...
متن کاملA preliminary study of microsatellite instability analysis in different genotypes of p53 codon 72 in breast invasive ductal carcinomas
Abstract Background: The polymorphic variants at codon 72 of the p53 gene, encoding either proline or arginine at residue 72, produce marked change in the structure of p53. From the evidence that the DNAmismatch repair system and p53 interact to maintain genomic integrity, we hypothesized that the codon 72 variation may influence the prevalence of microsatellite instability a featur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2005