Time-dependent mechanical characterization of poly(2-hydroxyethyl methacrylate) hydrogels using nanoindentation and unconfined compression.

نویسندگان

  • Jessica D Kaufman
  • Gregory J Miller
  • Elise F Morgan
  • Catherine M Klapperich
چکیده

Hydrogels pose unique challenges to nanoindentation including sample preparation, control of experimental parameters, and limitations imposed by mechanical testing instruments and data analysis originally intended for harder materials. The artifacts that occur during nanoindentation of hydrated samples have been described, but the material properties obtained from hydrated nanoindentation have not yet been related to the material properties obtained from macroscale testing. To evaluate the best method for correlating results from microscale and macroscale tests of soft materials, nanoindentation and unconfined compression stress-relaxation tests were performed on poly-2-hydroxyethyl methacrylate (pHEMA) hydrogels with a range of cross-linker concentrations. The nanoindentation data were analyzed with the Oliver-Pharr elastic model and the Maxwell-Wiechert (j = 2) viscoelastic model. The unconfined compression data were analyzed with the Maxwell-Wiechert model. This viscoelastic model provided an excellent fit for the stress-relaxation curves from both tests. The time constants from nanoindentation and unconfined compression were significantly different, and we propose that these differences are due to differences in equilibration time between the microscale and macroscale experiments and in sample geometry. The Maxwell-Wiechert equilibrium modulus provided the best agreement between nanoindentation and unconfined compression. Also, both nanoindentation analyses showed an increase in modulus with each increasing cross-linker concentration, validating that nanoindentation can discriminate between similar, low-modulus, hydrated samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of pH and temperature responsive poly(2-hydroxyethyl methacrylate-co-acrylamide) hydrogels

Acrylamide/2-hydroxyethyl methacrylate hydrogels were prepared by simultaneous radiation-induced cross-linking copolymerization of acrylamide (AAm), 2-hydroxyethyl methacrylate (HEMA) and water mixtures at a radiation dose of 10 kGy. Hydrogels were characterized by infrared spectroscopy. Dynamic and equilibrium swelling of hydrogels in water and in buffer solutions were investigated. They were ...

متن کامل

The use of polyacrylamide gels for mechanical calibration of cartilage--a combined nanoindentation and unconfined compression study.

This study investigates polyacrylamide (PA) gel as a calibration material to measure the nanomechanical compressive modulus of cartilage using nanoindentation. Both nanoindentation and unconfined compression testing were performed on PA gel and porcine rib cartilage. The equilibrium moduli measured by the two methods were discernable. Nanoindentation has the advantage of distinguishing between ...

متن کامل

Poly (2-Hydroxyethyl Methacrylate) Macroporous Cryogel for Extracorporeal Medical Devices

Poly (2-hydroxyethyl methacrylate) PHEMA monolithic cryogels were synthesized by free radical polymerization at -12°C for 18 hours and produced spongy, elastic and macroporous gel matrix. Scanning Electron Microscopy (SEM) measured structural properties of PHEMA monolithic cryogel matrix to visualize pore morphology. Mechanical properties of PHEMA monolithic cryogel such as storage modulus, com...

متن کامل

Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bea...

متن کامل

Synthesis and characterization of PEG dimethacrylates and their hydrogels.

Facile synthesis and detailed characterization of photopolymerizable and biocompatible poly(ethylene glycol) dimethacrylates (PEGDM) and poly(ethylene glycol) urethane-dimethacrylates (PEGUDM) are described. Poly(ethylene glycol)s of various molecular masses (M(n) = 1000 to 8000 g/mol) were reacted with methacrylic anhydride or with 2-isocyanatoethyl methacrylate to form PEGDMs and PEGUDMs, res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of materials research

دوره 23 5  شماره 

صفحات  -

تاریخ انتشار 2008