Efficient Computation of a Hierarchy of Discrete 3D Gradient Vector Fields
نویسندگان
چکیده
This paper introduces a novel combinatorial algorithm to compute a hierarchy of discrete gradient vector fields for three-dimensional scalar fields. The hierarchy is defined by an importance measure and represents the combinatorial gradient flow at different levels of detail. The presented algorithm is based on Forman’s discrete Morse theory, which guarantees topological consistency and algorithmic robustness. In contrast to previous work, our algorithm combines memory and runtime efficiency. It thereby lends itself to the analysis of large data sets. A discrete gradient vector field is also a compact representation of the underlying extremal structures – the critical points, separation lines and surfaces. Given a certain level of detail, an explicit geometric representation of these structures can be extracted using simple and fast graph algorithms.
منابع مشابه
Homological optimality in Discrete Morse Theory through chain homotopies
0167-8655/$ see front matter 2012 Published by doi:10.1016/j.patrec.2012.01.014 ⇑ Corresponding author. E-mail address: [email protected] (H. Molina-Abril). Morse theory is a fundamental tool for analyzing the geometry and topology of smooth manifolds. This tool was translated by Forman to discrete structures such as cell complexes, by using discrete Morse functions or equivalently gradient vector f...
متن کاملTowards Optimality in Discrete Morse Theory through Chain Homotopies
Once a discrete Morse function has been defined on a finite cell complex, information about its homology can be deduced from its critical elements. The main objective of this paper is to define optimal discrete gradient vector fields on general finite cell complexes, where optimality entails having the least number of critical elements. Our approach is to consider this problem as a homology com...
متن کاملEfficient Computation of Discrete Voronoi Diagram and Homotopy-Preserving Simplified Medial Axis of a 3D Polyhedron
AVNEESH SUD: Efficient Computation of Discrete Voronoi Diagram and Homotopy-Preserving Simplified Medial Axis of a 3D Polyhedron. (Under the direction of Dinesh Manocha.) The Voronoi diagram is a fundamental geometric data structure and has been well studied in computational geometry and related areas. A Voronoi diagram defined using the Euclidean distance metric is also closely related to the ...
متن کاملToward Optimality in Discrete Morse Theory
Morse theory is a fundamental tool for investigating the topology of smooth manifolds. This tool has been extended to discrete structures by Forman, which allows combinatorial analysis and direct computation. This theory relies on discrete gradient vector fields, whose critical elements describe the topology of the structure. The purpose of this work is to construct optimal discrete gradient ve...
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کامل