Phthalocyanine-Based Molecularly Imprinted Polymers as Nucleoside Receptors

نویسندگان

  • Luigia Longo
  • Giuseppe Vasapollo
چکیده

A molecularly imprinted polymer (MIP) for tri-O-acetyladenosine (TOAA), PPM(TOAA), was prepared by the combined use of methacrylic acid (MAA) and Zn(II)tetra(4'-methacryloxyphenoxy) phthalocyanine as functional monomers. This MIP exhibited a higher binding ability for TOAA compared to the MIP prepared using only MAA, PM(TOAA), in batch rebinding tests. Scatchard analysis gave a higher association constant of PPM(TOAA) for TOAA (2.96x104 M-1) than that of PM(TOAA) (1.48x104 M-1). The MIP prepared using only the zinc-phthalocyanine, PP(TOAA), did not show any binding capacity for TOAA. This means that the phthalocyanine in the MIP contributes to higher affinities, although it barely interacts with TOAA. Since selectivity for this kind of MIPs is more important than binding affinity, the binding of TOAA and a structurally related compound, tri-O-acetyluridine (TOAU), on the polymers was investigated. Both PPM(TOAA) and PM(TOAA) exhibited binding affinities for TOAA while they did not show any binding capacity for TOAU.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of a nanoporous molecularly imprinted polymers for dibutyl Phthalate extracted from Trichoderma Harzianum

In this study, molecularly imprinted polymers were synthesized for dibutyl phthalate as a bioactive chemical compound with antifungal activity which produced by Trichoderma Harzianum (JX1738521). The molecularly imprinted polymers were synthesized via precipitation polymerization method from methacrylic acid, dibutyl phthalate and trimetylolpropantrimethacrylate as a functional monomer, templat...

متن کامل

Synthesis and Evaluating of Nanoporous Molecularly Imprinted Polymers for Extraction of Quercetin as a Bioactive Component of Medicinal Plants

In this work, the template, monomer, and cross-linker with the ratio of 1:8:40 were used to synthesize Molecularly Imprinted Polymers (MIPs) for extraction of the bioactive chemical compounds from some traditional herbs as a sorbent material. Quercetin, Methacrylic Acid (MAA), Trimethylolpropanetrimethacrylate (TRIM) and Tetrahydrofuran (THF) were used as a template, funct...

متن کامل

Separation of ‎STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method

Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically.  ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...

متن کامل

Molecularly Imprinted Polymers: Present and Future Prospective

Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recogni...

متن کامل

Are molecularly imprinted polymers (MIPs) beneficial in detection and determination of mycotoxins in cereal samples?

The process of matrix clean-up and extraction of analytes has a significant influence on the detection and determination of the analyte, especially in trace amounts. Molecularly imprinted polymers (MIPs) are solid particles that can absorb specific molecules regarding the template molecule used in the synthesis process of each type of MIP. As a result, they can be used in more effective and mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Metal-Based Drugs

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008