Are Urban-Canopy Velocity Profiles Exponential?
نویسندگان
چکیده
Using analyses of data from extant direct numerical simulations and large-eddy simulations of boundary-layer and channel flows over and within urban-type canopies, sectional drag forces, Reynolds and dispersive shear stresses are examined for a range of roughness densities. Using the spatially-averaged mean velocity profiles these quantities allow deduction of the canopy mixing length and sectional drag coefficient. It is shown that the common assumptions about the behaviour of these quantities, needed to produce an analytical model for the canopy velocity profile, are usually invalid, in contrast to what is found in typical vegetative (e.g. forest) canopies. The consequence is that an exponential shape of the spatially-averaged mean velocity profile within the canopy cannot normally be expected, as indeed the data demonstrate. Nonetheless, recent canopy models that allow prediction of the roughness length appropriate for the inertial layer’s logarithmic profile above the canopy do not seem to depend crucially on their (invalid) assumption of an exponential profile within the canopy.
منابع مشابه
Momentum Transfer within Canopies
To understand the basic characteristics of the observed S-shaped wind profile and the exponential flux profile within forest canopies, three hypotheses are postulated. The relationship between these fundamental profiles is well established by combining the postulated hypotheses with momentum equations. Robust agreements between theoretical predictions and observations indicate that the nature o...
متن کاملAn Investigation of Higher-order Closure Models for a Forested Canopy
Simultaneous triaxial sonic anemometer velocity measurements vertically arrayed at six levels within and above a uniform pine forest were used to examine two parameterization schemes for the triple-velocity correlation tensor employed in higher-order closure models. These parameterizations are the gradient-diffusion approximation typically used in second-order closure models, and the full budge...
متن کاملInfluence of urban morphology on air flow over building arrays
In the present paper we have analysed experimentally (wind tunnel) and numerically (CFD) the impact of some morphological parameters on the flow within and above the urban canopy. In particular, this study is a first attempt in systematically studying the flow in and above urban canopies using simplified, yet more realistic than a simple array of cuboids, building arrays. Current mathematical m...
متن کاملOn the Coherence in the Boundary Layer: Development of a Canopy Interface Model
A 1D Canopy Interface Model (CIM) is developed to act as an interface between a meso-scale and a micro-scale atmospheric model and to better resolve the surface turbulent fluxes in the urban canopy layer. A new discretisation is proposed to solve the TKE equation finding solutions that remain fully concordant with the surface layer theories developed for neutral flows over flat surfaces. A corr...
متن کاملEstimating Co2 Source/sink Distributions within a Rice Canopy Using Higher-order Closure Models
Source/sink strengths and vertical flux distributions of carbon dioxide within and above a rice canopy were modelled using measured mean concentration profiles collected during an international rice experiment in Okayama, Japan (IREX96). The model utilizes an Eulerian higher-order closure approach that permits coupling of scalar and momentum transport within vegetation to infer sources and sink...
متن کامل