A nonparametric-based rib suppression method for chest radiographs

نویسندگان

  • Jiann-Shu Lee
  • Jing-Wein Wang
  • Hsing-Hsien Wu
  • Ming-Zheng Yuan
چکیده

This paper presents an automated and comprehensive system for eliminating rib shadows in chest radiographs, which integrates lung field identification, rib segmentation, rib intensity estimation, and suppression. We designed a region of interest (ROI)-based method to estimate a suitable initial lung boundary for active shape model (ASM) deformation by determining the translation and scaling parameters from the lung ROI. By considering the anatomical structure of the rib cage, we developed a locale sampling scheme to achieve nonparametric rib modeling. This scheme integrates knowledge-based generalized Hough transform (GHT) for accurate rib segmentation. We subsequently estimated rib intensity using the real-coded genetic algorithm (RCGA). Experimental results indicate that the relative conspicuity of the nodules increased after rib suppression, compared to the original image. Additionally, the proposed system uses only one standard chest radiograph, and the dual-energy subtraction technique is not required. Thus, this system is suitable for radiologists and computer-aided diagnosis (CAD) schemes for detecting lung nodules in chest radiographs. © 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Automatic Lung Segmentation and Rib Suppression Methods to Improve Nodule Detection in Chest Radiographs

Computer-aided Diagnosis (CAD) systems can assist radiologists in several diagnostic tasks. Lung segmentation is one of the mandatory steps for initial detection of lung cancer in Posterior-Anterior chest radiographs. On the other hand, many CAD schemes in projection chest radiography may benefit from the suppression of the bony structures that overlay the lung fields, e.g. ribs. The original i...

متن کامل

Suppression of the Contrast of Ribs in Chest Radiographs by Means of Massive Training Artificial Neural Network

We developed a method for suppression of the contrast of ribs in chest radiographs by means of a massive training artificial neural network (MTANN). The MTANN is a trainable highly nonlinear filter that can be trained by using input chest radiographs and the corresponding teacher images. We used either the soft-tissue image or the bone image obtained by use of a dual-energy subtraction techniqu...

متن کامل

Performance of radiologists in detection of small pulmonary nodules on chest radiographs: effect of rib suppression with a massive-training artificial neural network.

OBJECTIVE A massive-training artificial neural network is a nonlinear pattern recognition tool used to suppress rib opacity on chest radiographs while soft-tissue contrast is maintained. We investigated the effect of rib suppression with a massive-training artificial neural network on the performance of radiologists in the detection of pulmonary nodules on chest radiographs. MATERIALS AND MET...

متن کامل

Rib Suppression for Enhancing Frontal Chest Radiographs Using Independent Component Analysis

Chest radiographs play an important role in the diagnosis of lung cancer. Detection of pulmonary nodules in chest radiographs forms the basis of early detection. Due to its sparse bone structure and overlapping of the nodule with ribs and clavicles the nodule is hard to detect in conventional chest radiographs. We present a technique based on Independent Component Analysis (ICA) for the suppres...

متن کامل

Quantitative Measurement Method for Possible Rib Fractures in Chest Radiographs

OBJECTIVES This paper proposes a measurement method to quantify the abnormal characteristics of the broken parts of ribs using local texture and shape features in chest radiographs. METHODS OUR MEASUREMENT METHOD COMPRISES TWO STEPS: a measurement area assignment and sampling step using a spline curve and sampling lines orthogonal to the spline curve, and a fracture-ness measurement step with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2012